×

Dimension reduction techniques for the minimization of theta functions on lattices. (English) Zbl 1370.82047

Summary: We consider the minimization of theta functions \(\theta_{\Lambda}(\alpha) = \sum_{p \in \Lambda} e^{- \pi \alpha | p |^2}\) amongst periodic configurations \(\Lambda \subset \mathbb{R}^d\), by reducing the dimension of the problem, following as a motivation the case \(d = 3\), where minimizers are supposed to be either the body-centered cubic or the face-centered cubic lattices. A first way to reduce dimension is by considering layered lattices, and minimize either among competitors presenting different sequences of repetitions of the layers, or among competitors presenting different shifts of the layers with respect to each other. The second case presents the problem of minimizing theta functions also on translated lattices, namely, minimizing \((\Lambda, u) \mapsto \theta_{\Lambda + u}(\alpha)\), relevant to the study of two-component Bose-Einstein condensates, Wigner bilayers and of general crystals. Another way to reduce dimension is by considering lattices with a product structure or by successively minimizing over concentric layers. The first direction leads to the question of minimization amongst orthorhombic lattices, whereas the second is relevant for asymptotics questions, which we study in detail in two dimensions.{
©2017 American Institute of Physics}

MSC:

82D25 Statistical mechanics of crystals
14K25 Theta functions and abelian varieties
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aftalion, A.; Blanc, X.; Nier, F., Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates, J. Funct. Anal., 241, 661-702 (2006) · Zbl 1118.82004 · doi:10.1016/j.jfa.2006.04.027
[2] Alvarez-Gaumé, L.; Moore, G.; Vafa, C., Theta functions, modular invariance, and strings, Commun. Math. Phys., 106, 1-40 (1986) · Zbl 0605.58049 · doi:10.1007/bf01210925
[3] Antlanger, M.; Kahl, G.; Mazars, M.; Šamaj, L.; Trizac, E., Rich polymorphic behavior of Wigner bilayers, Phys. Rev. Lett., 117, 118002 (2016) · doi:10.1103/physrevlett.117.118002
[4] Bachoc, C.; Venkov, B., Modular forms, lattices and spherical designs, Réseaux Euclidiens, Designs Sphériques et Formes Modulaires · Zbl 1061.11035
[5] Baernstein, A. II, A minimum problem for heat kernels of flat tori, Contemp. Math., 201, 227-243 (1997) · Zbl 0887.58051 · doi:10.1090/conm/201/02604
[6] Banaszczyk, W., New bounds in some transference theorems in the geometry of numbers, Math. Ann., 296, 1, 625-635 (1993) · Zbl 0786.11035 · doi:10.1007/bf01445125
[7] Barvinok, A., Lecture Notes on Combinatorics, Geometry and Complexity of Integer Points.
[8] Bernstein, S., Sur les fonctions absolument monotones, Acta Math., 52, 1-66 (1929) · JFM 55.0142.07 · doi:10.1007/bf02547400
[9] Bétermin, L.; Sandier, E., Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere (2016)
[10] Bétermin, L., Two-dimensional theta functions and crystallization among Bravais lattices, SIAM J. Math. Anal., 48, 5, 3236-3269 (2016) · Zbl 1356.82008 · doi:10.1137/15m101614x
[11] Bétermin, L.; Zhang, P., Minimization of energy per particle among Bravais lattices in \(<mml:math display=''inline`` overflow=''scroll``>\): Lennard-Jones and Thomas-Fermi cases, Commun. Contemp. Math., 17, 6, 1450049 (2015) · Zbl 1329.82019 · doi:10.1142/s0219199714500497
[12] Blanc, X.; Lewin, M., The crystallization conjecture: A review, EMS Surv. Math. Sci., 2, 255-306 (2015) · Zbl 1341.82010 · doi:10.4171/emss/13
[13] Brauchart, J. B.; Hardin, D. P.; Saff, E. B., Discrete energy asymptotics on a Riemannian circle, Unif. Distrib. Theory, 7, 2, 77-108 (2012) · Zbl 1324.31006
[14] Cassels, J. W. S., On a problem of Rankin about the Epstein zeta-function, Proc. Glasgow Math. Assoc., 4, 73-80 (1959) · Zbl 0103.27602 · doi:10.1017/s2040618500033906
[15] Chen, X.; Oshita, Y., An application of the modular function in nonlocal variational problems, Arch. Ration. Mech. Anal., 186, 1, 109-132 (2007) · Zbl 1147.74024 · doi:10.1007/s00205-007-0050-z
[16] Cohn, H.; de Courcy-Ireland, M., The Gaussian core model in high dimensions (2016) · Zbl 1417.52010
[17] Cohn, H.; Kumar, A., Counterintuitive ground states in soft-core models, Phys. Rev. E, 78, 6, 061113 (2008) · doi:10.1103/physreve.78.061113
[18] Conway, J. H.; Sloane, N. J. A., Four-dimensional lattices with the same theta series, Int. Math. Res. Not., 4, 93-96 (1992) · Zbl 0770.11022 · doi:10.1155/S1073792892000102
[19] Conway, J. H.; Sloane, N. J. A., What are all the best sphere packings in low dimensions?, Discrete Comput. Geom., 13, 3-4, 383-403 (1995) · Zbl 0844.52013 · doi:10.1007/bf02574051
[20] Conway, J. H.; Sloane, N. J. A., Sphere Packings, Lattices and Groups (1999) · Zbl 0915.52003
[21] Coulangeon, R., Spherical designs and zeta functions of lattices, Int. Math. Res. Not., 2006, 49620 · Zbl 1159.11020 · doi:10.1155/imrn/2006/49620
[22] Coulangeon, R.; Lazzarini, G., Spherical designs and heights of Euclidean lattices, J. Number Theory, 141, 288-315 (2014) · Zbl 1304.11060 · doi:10.1016/j.jnt.2014.02.015
[23] Coulangeon, R.; Schürmann, A., Energy minimization, periodic sets and spherical designs, Int. Math. Res. Not., 2012, 829-848 · Zbl 1272.49004 · doi:10.1093/imrn/rnr048
[24] Diananda, P. H., Notes on two lemmas concerning the Epstein zeta-function, Proc. Glasgow Math. Assoc., 6, 202-204 (1964) · Zbl 0128.04501 · doi:10.1017/s2040618500035036
[25] Ennola, V., A lemma about the Epstein zeta-function, Proc. Glasgow Math. Assoc., 6, 198-201 (1964) · Zbl 0128.04402 · doi:10.1017/s2040618500035024
[26] Ennola, V., On a problem about the Epstein zeta-function, Math. Proc. Cambridge Philos. Soc., 60, 855-875 (1964) · Zbl 0146.05504 · doi:10.1017/s0305004100038330
[27] Faulhuber, M.; Steinerberger, S., Optimal Gabor frame bounds for separable lattices and estimates for Jacobi theta functions, J. Math. Anal. Appl., 445, 1, 407-422 (2017) · Zbl 1351.42039 · doi:10.1016/j.jmaa.2016.07.074
[28] Flory, P. J.; Krigbaum, W. R., Statistical mechanics of dilute polymer solutions. II, J. Chem. Phys., 18, 1086 (1950) · doi:10.1063/1.1747866
[29] Foreman, M., Descriptive Set Theory and Dynamical Systems (2000)
[30] Hardin, D.; Saff, E.; Simanek, B.; Su, Y., Next order energy asymptotics for Riesz potentials on flat tori, Int. Math. Res. Not., 2017, 12, 3529-3556 · Zbl 1405.31008
[31] Hardin, D. P.; Saff, E. B.; Simanek, B., Periodic discrete energy for long-range potentials, J. Math. Phys., 55, 123509 (2014) · Zbl 1310.74022 · doi:10.1063/1.4903975
[32] Kasamatsu, K.; Tsubota, M.; Ueda, M., Vortices in multicomponent Bose-Einstein condensates, Int. J. Mod. Phys. B, 19, 11, 1835-1904 (2005) · Zbl 1067.82005 · doi:10.1142/s0217979205029602
[33] Lawden, D. F., Elliptic Functions and Applications (1989) · Zbl 0689.33001
[34] Martinet, J., Perfect Lattices in Euclidean Spaces (2010)
[35] Montgomery, H. L., Minimal theta functions, Glasgow Math. J., 30, 1, 75-85 (1988) · Zbl 0639.10017 · doi:10.1017/s0017089500007047
[36] Mueller, E. J.; Ho, T.-L., Two-component Bose-Einstein condensates with a large number of vortices, Phys. Rev. Lett., 88, 18, 180403 (2002) · doi:10.1103/physrevlett.88.180403
[37] Nier, F., A propos des fonctions thêta et des réseaux d’Abrikosov · Zbl 1171.33012
[38] Nonnenmacher, S.; Voros, A., Chaotic eigenfunctions in phase space, J. Stat. Phys., 92, 431-518 (1998) · Zbl 1079.81530 · doi:10.1023/a:1023080303171
[39] Oggier, F.; Sole, P.; Belfiore, J.-C., Lattice codes for the wiretap Gaussian channel: Construction and analysis, IEEE Trans. Inf. Theory, 62, 10, 5690-5708 (2015) · Zbl 1359.94149 · doi:10.1109/tit.2015.2494594
[40] Orlovskaya, E. V., The minimum for the theta-function of three variables and the solution of the Rankin-Sobolev problem in a three-dimensional space, J. Math. Sci., 83, 5, 657-664 (1997) · Zbl 0871.11029 · doi:10.1007/bf02434855
[41] Osgood, B.; Phillips, R.; Sarnak, P., Extremals of determinants of Laplacians, J. Funct. Anal., 80, 148-211 (1988) · Zbl 0653.53022 · doi:10.1016/0022-1236(88)90070-5
[42] Petrache, M.; Serfaty, S., Next order asymptotics and renormalized energy for Riesz interactions, J. Inst. Math. Jussieu, 16, 501-569 (2017) · Zbl 1373.82013 · doi:10.1017/s1474748015000201
[43] Price, T., Is the heat kernel more spread out with a smaller metric? (2014)
[44] Rankin, R. A., A minimum problem for the Epstein zeta-function, Proc. Glasgow Math. Assoc., 1, 149-158 (1953) · Zbl 0052.28005 · doi:10.1017/s2040618500035668
[45] Regev, O.; Stephens-Davidowitz, N., An inequality for Gaussians on lattices, SIAM J. Discrete Math., 31, 2, 749-757 (2017) · Zbl 1395.11105 · doi:10.1137/15m1052226
[46] Šamaj, L.; Trizac, E., Critical phenomena and phase sequence in a classical bilayer Wigner crystal at zero temperature, Phys. Rev. B, 85, 20, 205131 (2012) · doi:10.1103/physrevb.85.205131
[47] Sandier, E.; Serfaty, S., From the Ginzburg-Landau model to vortex lattice problems, Commun. Math. Phys., 313, 3, 635-743 (2012) · Zbl 1252.35034 · doi:10.1007/s00220-012-1508-x
[48] Sarnak, P.; Strömbergsson, A., Minima of Epstein’s zeta function and heights of flat tori, Inventiones Math., 165, 115-151 (2006) · Zbl 1145.11033 · doi:10.1007/s00222-005-0488-2
[49] Shakarchi, R.; Stein, E. M., Complex Analysis (2003) · Zbl 1020.30001
[50] Stillinger, F. H., Phase transitions in the Gaussian core system, J. Chem. Phys., 65, 3968 (1976) · doi:10.1063/1.432891
[51] Stillinger, F. H., Duality relations for the Gaussian core model, Phys. Rev. B, 20, 1, 299-302 (1979) · doi:10.1103/physrevb.20.299
[52] Terras, A., Harmonic Analysis on Symmetric Spaces and Applications (1985) · Zbl 0574.10029
[53] Tilley, R. J. D., Crystals and Crystal Structures (2006)
[54] Torquato, S., Reformulation of the covering and quantizer problems as ground states of interacting particles, Phys. Rev. E, 82, 5, 056109 (2010) · doi:10.1103/physreve.82.056109
[55] Torquato, S.; Stillinger, F. H., New conjectural lower bounds on the optimal density of sphere packings, Exp. Math., 15, 307-332 (2006) · Zbl 1113.52034 · doi:10.1080/10586458.2006.10128964
[56] Venkov, B., Réseaux et designs sphériques, Réseaux Euclidiens, Designs Sphériques et Formes Modulaires, 10-86 · Zbl 1139.11320
[57] Zachary, C. E.; Stillinger, F. H.; Torquato, S., Gaussian core model phase diagram and pair correlations in high Euclidean dimensions, J. Chem. Phys., 128, 224505 (2008) · doi:10.1063/1.2928843
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.