×

A first-passage kinetic Monte Carlo algorithm for complex diffusion-reaction systems. (English) Zbl 1186.82046

Summary: We develop an asynchronous event-driven First-Passage Kinetic Monte Carlo (FPKMC) algorithm for continuous time and space systems involving multiple diffusing and reacting species of spherical particles in two and three dimensions. The FPKMC algorithm presented here is based on the method introduced by T. Oppelstrup, V.V. Bulatov, G.H. Gilmer, M.H. Kalos and B. Sadigh, First-passage Monte Carlo algorithm: diffusion without all the hops, Phys. Rev. Lett. 97 (23), 230602 (2006)] and is implemented in a robust and flexible framework. Unlike standard KMC algorithms such as the \(n\)-fold algorithm, FPKMC is most efficient at low densities where it replaces the many small hops needed for reactants to find each other with large first-passage hops sampled from exact time-dependent Green’s functions, without sacrificing accuracy. We describe in detail the key components of the algorithm, including the event-loop and the sampling of first-passage probability distributions, and demonstrate the accuracy of the new method. We apply the FPKMC algorithm to the challenging problem of simulation of long-term irradiation of metals, relevant to the performance and aging of nuclear materials in current and future nuclear power plants. The problem of radiation damage spans many decades of time-scales, from picosecond spikes caused by primary cascades, to years of slow damage annealing and microstructure evolution. Our implementation of the FPKMC algorithm has been able to simulate the irradiation of a metal sample for durations that are orders of magnitude longer than any previous simulations using the standard Object KMC or more recent asynchronous algorithms.

MSC:

82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)
35K57 Reaction-diffusion equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Strobel, M.; Heinig, K.-H.; Möller, W., Three-dimensional domain growth on the size scale of the capillary length: effective growth exponent and comparative atomistic and mean-field simulations, Phys. Rev. B, 64, 24, 245422 (2001)
[2] Reese, J. S.; Raimondeau, S.; Vlachos, D. G., Monte Carlo algorithms for complex surface reaction mechanisms: efficiency and accuracy, J. Comput. Phys., 173, 1, 302-321 (2001) · Zbl 0987.65004
[3] Biehl, M., Lattice gas models and kinetic monte carlo simulations of epitaxial growth, (Voigt, A., International Series of Numerical Mathematics, vol. 149 (2005), Birkhaeuser), 3-18 · Zbl 1082.82521
[4] Theiss, S. K.; Caturla, M.-J.; Johnson, M. D.; Zhu, J.; Lenosky, T. J.; Sadigh, B.; Diaz de la Rubia, T., Atomic scale models of ion implantation and dopant diffusion in silico, Thin Solid Films, 365, 219-230 (2000)
[5] Domain, C.; Becquart, C. S.; Malerba, L., Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach, J. Nucl. Mater., 335, 1, 121-145 (2004)
[6] Tolle, D. P.; Le Novere, N., Particle-based stochastic simulation in systems biology, Curr. Bioinformat., 1, 3, 315-320 (2006)
[7] van Zon, J. S.; ten Wolde, P. R., Green’s-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space, J. Chem. Phys., 123, 23, 234910 (2005)
[8] Plimpton, S. J.; Slepoy, A., Microbial cell modeling via reacting diffusive particles, J. Phys.: Conf. Ser., 16, 305-309 (2005)
[9] Kalos, M. H.; Levesque, D.; Verlet, L., Helium at zero temperature with hard-sphere and other forces, Phys. Rev. A, 9, 5, 2178-2195 (1974)
[10] Oppelstrup, T.; Bulatov, V. V.; Gilmer, G. H.; Kalos, M. H.; Sadigh, B., First-passage Monte Carlo algorithm: diffusion without all the hops, Phys. Rev. Lett., 97, 23, 230602 (2006)
[11] Oppelstrup, T.; Bulatov, V. V.; Donev, A.; Kalos, M. H.; Gilmer, G. H.; Sadigh, B., First-passage kinetic Monte Carlo method, Phys. Rev. E, 80, 6, 066701 (2009), Available from: <arXiv:0905.3575>
[12] Dalla Torre, J.; Bocquet, J.-L.; Doan, N. V.; Adam, E.; Barbu, A., JERK, an event-based kinetic Monte Carlo model to predict microstructure evolution of materials under irradiation, Philos. Mag., 85, 549-558 (2005)
[13] Barbu, A.; Becquart, C. S.; Bocquet, J. L.; Dalla Torre, J.; Domain, C., comparison between three complementary approaches to simulate large-fluence irradiation: application to electron irradiation of thin foils, Philos. Mag., 85, 541-547 (2005)
[14] Donev, A., Asynchronous event-driven particle algorithms, SIMULATION: Transactions of the Society for Modeling and Simulation International, 85, 4, 229-242 (2008)
[15] Alder, B. J.; Wainwright, T. E., Studies in molecular dynamics. I. General method, J. Chem. Phys., 31, 459-466 (1959)
[16] Scala, A.; Voigtmann, T.; De Michele, C., Event-driven Brownian dynamics for hard spheres, J. Chem. Phys., 126, 13, 134109 (2007)
[17] Bortz, A. B.; Kalos, M. H.; Lebowitz, J. L., A new algorithm for Monte Carlo simulation of Ising spin systems, J. Comput. Phys., 17, 1, 10-18 (1975)
[18] Redner, S., A Guide to First-passage Processes (2001), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0980.60006
[19] Given, J. A.; Hubbard, J. B.; Douglas, J. F., A first-passage algorithm for the hydrodynamic friction and diffusion-limited reaction rate of macromolecules, J. Chem. Phys., 106, 9, 3761-3771 (1997)
[20] Hwang, C.-O.; Given, J. A.; Mascagni, M., The simulation-tabulation method for classical diffusion Monte Carlo, J. Comput. Phys., 174, 925-946 (2001) · Zbl 0991.65002
[21] Donev, A.; Torquato, S.; Stillinger, F. H., Neighbor list collision-driven molecular dynamics simulation for nonspherical particles: I. Algorithmic details II. Applications to ellipses and ellipsoids, J. Comput. Phys., 202, 2, 737-764 (2005), 765-793 · Zbl 1067.82061
[22] Barbu, A.; Clouet, E., Cluster dynamics modeling of materials: advantages and limitations, Solid State Phenom., 129, 51 (2007)
[23] Serruys, Y.; Ruault, M. O.; Trocellier, P.; Miro, S.; Barbu, A.; Boulanger, L.; Kaı¨tasov, O.; Henry, S.; Leseigneur, O.; Trouslard, P., JANNUS: experimental validation at the scale of atomic modelling, Compt. Rendus-Phys., 9, 3-4, 437-444 (2008)
[24] Caturla, M. J.; Diaz de la Rubia, T.; Fluss, M., Modeling microstructure evolution of fcc metals under irradiation in the presence of He, J. Nucl. Mater., 323, 2-3, 163-168 (2003)
[25] Andrews, S. S.; Bray, D., Stochastic simulation of chemical reactions with spatial resolution and single molecule detail, Phys. Biol., 1, 3, 137-151 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.