×

zbMATH — the first resource for mathematics

Effects of three geometrical parameters on pulsatile blood flow in complete idealised coronary bypasses. (English) Zbl 1365.76355
Summary: The main objective of the study is to perform a numerical analysis of physiological blood flow in a complete idealised 3D coronary bypass model as a function of three significant geometrical parameters: stenosis degree (50%, 65%, 75%, 85%, 100%), junction angle (\(\alpha=30^\circ\), 35\(^\circ\), 45\(^\circ\), 55\(^\circ\), 70\(^\circ\)) and diameter ratio (\(D:d=1:0.5\), 1:1, 1:1.5, 1:1\(\sim\)0.5, 1:0.5\(\sim\)1). All computations are performed with an incompressible Navier-Stokes solver, the algorithm for which is based on a fractional step scheme and finite volume method formulated for hybrid unstructured tetrahedral grids. The time discretisation of the incompressible Navier-Stokes equations is performed using the implicit second-order Crank-Nicolson scheme. The computed velocity profiles and distributions of cycle-averaged wall shear stress (WSS) and oscillatory shear index (OSI) are analysed. The tendency of blood flow to be influenced by the specified geometrical parameter is discussed with regard to the possibility of intimal thickening and thrombus formation.

MSC:
76Z05 Physiological flows
92C35 Physiological flow
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bassiouny, H.S.; White, S.; Glagov, S.; Choi, E.; Giddens, D.P.; Zarins, C.K., Anastomotic intimal hyperplasia: mechanical injury or flow induced, J vasc surg, 15, 708-717, (1992)
[2] Loth, F.; Fischer, P.F.; Bassiouny, H.S., Blood flow in end-to-side anastomoses, Annu rev fluid mech, 40, 367-393, (2008) · Zbl 1214.76014
[3] Haruguchi, H.; Teraoka, S., Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review, J artif organs, 6, 4, 227-235, (2003)
[4] Vara, D.S.; Punshon, G.; Sales, K.M.; Hamilton, G.; Seifalian, A.M., Haemodynamic regulation of gene expression in vascular tissue engineering, Curr vasc pharmacol, 9, 167-187, (2011)
[5] Lee, D.; Su, J.M.; Liang, H.Y., A numerical simulation of steady flow fields in a bypass tube, J biomech, 34, 11, 1407-1416, (2001)
[6] Ko, T.H.; Ting, K.; Yeh, H.C., Numerical investigation on flow fields in partially stenosed artery with complete bypass graft: an in vitro study, Int commun heat mass, 34, 6, 713-727, (2007)
[7] Lei, M.; Kleinstreuer, C.; Archie, J.P., Geometric design improvements for femoral graft – artery junctions mitigating restenosis, J biomech, 29, 12, 1605-1614, (1996)
[8] Henry, F.S.; Küpper, C.; Lewington, N.P., Simulation of flow through a Miller cuff bypass graft, Comput method biomech, 5, 3, 207-217, (2002)
[9] Bertolotti, C.; Deplano, V.; Fuseri, J.; Dupouy, P., Numerical and experimental model of post-operative realistic flows in stenosed coronary bypasses, J biomech, 34, 8, 1049-1064, (2001)
[10] Bertolotti, C.; Deplano, V., Three-dimensional numerical simulations of flow through a stenosed coronary bypass, J biomech, 33, 8, 1011-1022, (2000)
[11] Xiong, F.L.; Chong, C.K., A parametric numerical investigation on haemodynamics in distal coronary anastomoses, Med eng phys, 30, 311-320, (2008)
[12] Zhang, J.M.; Chua, L.P.; Ghista, D.N.; Zhou, T.M.; Tan, Y.S., Validation of numerical simulation with PIV measurements for two anastomosis models, Med eng phys, 30, 226-247, (2008)
[13] How, T.V.; Black, R.A.; Hughes, P.E., Hemodynamics of vascular prostheses, (), 373-423
[14] Perktold, K.; Rappitsch, G., Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model, J biomech, 28, 845-856, (1995)
[15] Dobrin, P.B.; Littooy, F.N.; Golan, J.; Blakeman, B.; Fareed, J., Mechanical and histologic changes in canine vein grafts, J surg res, 44, 259-265, (1988)
[16] Zeng, D.; Ding, Z.; Friedman, M.H.; Ethier, C.R., Effects of cardiac motion on right coronary artery hemodynamics, Ann biomed eng, 31, 420-429, (2003)
[17] Vimmr, J.; Jonášová, A., Non-Newtonian effects of blood flow in complete coronary and afemoral bypasses, Math comput simulat, 80, 6, 1324-1336, (2010) · Zbl 1193.92030
[18] Tannehill, J.C.; Anderson, D.A.; Pletcher, R.H., Computational fluid mechanics and heat transfer, (1997), Taylor & Francis Philadelphia
[19] Hirsch, C., Numerical computation of internal and external flows, ()
[20] Chorin, A.J., Numerical solution of the navier – stokes equations, Math comp, 22, 745-762, (1968) · Zbl 0198.50103
[21] Kim, D.; Choi, H., A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids, J comput phys, 162, 2, 411-428, (2000) · Zbl 0985.76060
[22] Davidson, L., A pressure correction method for unstructured meshes with arbitrary control volumes, Int J numer methods fluids, 22, 4, 265-281, (1996) · Zbl 0863.76050
[23] Loudon, C.; Tordesillas, A., The use of the dimensionless womersley number to characterize the unsteady nature of internal flow, J theor biol, 191, 1, 63-78, (1998)
[24] He, X.; Ku, D.N., Pulsatile flow in the human left coronary artery bifurcation: average conditions, J biomech eng, 118, 1, 74-82, (1996)
[25] Malek, A.M.; Izumo, S., Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress, J cell sci, 109, 713-726, (1996)
[26] Ku, D.N.; Giddens, D.P.; Zarins, C.K.; Glagov, S., Pulsatile flow and atherosclerosis in the human carotid bifurcation – positive correlation between plaque location and low oscillating shear stress, Arterioscler thromb vasc biol, 5, 3, 293-302, (1985)
[27] Kleinstreuer, C.; Buchanan, J.R.; Lei, M.; Truskey, G.A., Computational analysis of particle-hemodynamics and prediction of the onset of arterial diseases, (), 1-69
[28] Lee, S.S.; Ahn, K.H.; Lee, S.J.; Sun, K.; Goedhart, P.T.; Hardeman, M.R., Shear induced damage of red blood cells monitored by the decrease of their deformability, Korea-aust rheol J, 16, 3, 141-146, (2004)
[29] Beneš, L.; Louda, P.; Kozel, K.; Keslerová, R.; Štigler, J., Numerical simulations of flow through channels with T-junction, Appl math comput, (2011), doi:10.1016/j.amc.2011.04.074
[30] Buchanan, J.R.; Kleinstreuer, C.; Comer, J.K., Rheological effects on pulsatile hemodynamics in a stenosed tube, Comput fluids, 29, 6, 695-724, (2000) · Zbl 0992.76103
[31] Papaharilaou, Y.; Doorly, D.J.; Sherwin, S.J., The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis, J biomech, 35, 1225-1239, (2002)
[32] Hofer, M.; Rappitsch, G.; Perktold, K.; Trubel, W.; Schima, H., Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia, J biomech, 29, 10, 1297-1308, (1996)
[33] Leuprecht, A.; Perktold, K.; Prosi, M.; Berk, T.; Trubel, W.; Schima, H., Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts, J biomech, 35, 225-236, (2002)
[34] Holzapfel, G.A.; Ogden, R.W., Constitutive modelling of arteries, Proc roy soc A - math phys, 466, 1551-1597, (2010) · Zbl 1197.74075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.