zbMATH — the first resource for mathematics

Numerical simulation of 3D flow of viscous and viscoelastic fluids in T-junction channel. (English) Zbl 1387.76066
Karasözen, Bülent (ed.) et al., Numerical mathematics and advanced applications – ENUMATH 2015. Selected papers based on the presentations at the European conference, Ankara, Turkey, September 14–18, 2015. Cham: Springer (ISBN 978-3-319-39927-0/hbk; 978-3-319-39929-4/ebook). Lecture Notes in Computational Science and Engineering 112, 491-498 (2016).
Summary: This paper is interested in the numerical simulation of steady flows of laminar incompressible viscous and viscoelastic fluids through the channel with T-junction. The flow is described by the system of generalized incompressible Navier-Stokes equations. For the different choice of fluids model the different model of the stress tensor is used, Newtonian and Oldroyd-B models. Numerical tests are performed on three dimensional geometry, a branched channel with one entrance and two outlet parts. Numerical solution of the described models is based on cell-centered finite volume method using explicit Runge-Kutta time integration.
For the entire collection see [Zbl 1358.65003].
76M12 Finite volume methods applied to problems in fluid mechanics
76A10 Viscoelastic fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] M. Anand, J. Kwack, A. Masud, A new generalized Oldroyd-B model for blood flow in complex geometries. Int. J. Eng. Sci. 72, 78–88 (2013) · Zbl 1423.76514 · doi:10.1016/j.ijengsci.2013.06.009
[2] L. Beneš, P. Louda, K. Kozel, R. Keslerová, J. Štigler, Numerical simulations of flow through channels with T-junction. Appl. Math. Comput. 219, 7225–7235 (2013) · Zbl 1426.76099
[3] T. Bodnar, A. Sequeira, Numerical study of the significance of the non-Newtonian nature of blood in steady flow through stenosed vessel, in Advances in Mathematical Fluid Mechanics (Springer, Heidelberg/Dordrecht, 2010), pp. 83–104 · Zbl 1374.76019
[4] T. Bodnar, A. Sequeira, L. Pirkl, Numerical simulations of blood flow in a stenosed vessel under different flow rates using a generalized Oldroyd-B model. Numer. Anal. Appl. Math. 2, 645–648 (2009) · Zbl 1223.76141 · doi:10.1063/1.3241546
[5] T. Bodnar, A. Sequeira, M. Prosi, On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Appl. Math. Comput. 217, 5055–5067 (2010) · Zbl 1276.76098
[6] A.J. Chorin, A numerical method for solving incompressible viscous flow problem. J. Comput. Phys. 135, 118–125 (1967) · Zbl 0899.76283 · doi:10.1006/jcph.1997.5716
[7] R. Keslerová, K. Kozel, Numerical simulation of viscous and viscoelastic fluids flow by finite volume method, in 6th International Symposium on Finite Volumes for Complex Applications, Prague (2011) · Zbl 1246.76099
[8] R. Keslerová, K. Kozel, Numerical simulation of generalized Newtonian and Oldroyd-B fluids flow, in 16th Seminar on Programs and Algorithms of Numerical Mathematics, Dolní Maxov (2012) · Zbl 1340.76021
[9] A. Leuprecht, K. Perktold, Computer simulation of non-Newtonian effects of blood flow in large arteries. Comput. Methods Biomech. Biomech. Eng. 4, 149–163 (2001) · doi:10.1080/10255840008908002
[10] R. LeVeque, Finite-Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge/New York, 2004)
[11] P. Louda, J. Příhoda, K. Kozel, P. Sváček, Numerical simulation of flows over 2D and 3D backward-facing inclined steps. Int. J. Heat Fluid Flow 43, 268–276 (2013) · doi:10.1016/j.ijheatfluidflow.2013.05.023
[12] H.M. Matos, P.J. Oliveira, Steady flows of constant-viscosity viscoelastic fluids in a planar T-junction. J. Non-Newton. Fluid Mech. 213, 15–26 (2014) · doi:10.1016/j.jnnfm.2014.08.015
[13] R.J. Poole, S.J. Haward, M.A. Alves, Symmetry-breaking bifurcations in T-channel flows: effects of fluid viscoelasticity. Procedia Eng. 79, 28–34 (2014) · doi:10.1016/j.proeng.2014.06.305
[14] M.G. Rabby, A. Razzak, M.M. Molla, Pulsatile non-Newtonian blood flow through a model of arterial stenosis. Procedia Eng. 56, 225–231 (2013) · doi:10.1016/j.proeng.2013.03.111
[15] J. Vimmr, A. Jonášová, O. Bublík, Effects of three geometrical parameters on pulsatile blood flow in complete idealised coronary bypasses. Math. Comput. Simul. 80, 1324–1336 (2010) · Zbl 1193.92030 · doi:10.1016/j.matcom.2009.01.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.