×

Sequential \(\delta\)-optimal consumption and investment for stochastic volatility markets with unknown parameters. (English. Russian original) Zbl 1352.91030

Theory Probab. Appl. 60, No. 4, 533-560 (2016); translation from Teor. Veroyatn. Primen. 60, No. 4, 628-659 (2015).
Summary: We consider an optimal investment and consumption problem for a Black-Scholes financial market with stochastic volatility and unknown stock price appreciation rate. The volatility parameter is driven by an external economic factor modeled as a diffusion process of Ornstein-Uhlenbeck type with unknown drift. We use the dynamical programming approach and find an optimal financial strategy which depends on the drift parameter. To estimate the drift coefficient we observe the economic factor \(Y\) in an interval \([0,T_0]\) for fixed \(T_0>0\), and use sequential estimation. We show that the consumption and investment strategy calculated through this sequential procedure is \(\delta\)-optimal.

MSC:

91G10 Portfolio theory
91G80 Financial applications of other theories
90C39 Dynamic programming
93E20 Optimal stochastic control
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] B. Berdjane and S. Pergamenshchikov, {\it Optimal consumption and investment for markets with random coefficients}, Finance Stoch., 17 (2013), pp. 419-446. · Zbl 1278.91127
[2] N. Castan͂eda-Leyva and D. Hernández-Hernández, {\it Optimal consumption-investment problems in incomplete markets with stochastic coefficients}, SIAM J. Control Optim., 44 (2005), pp. 1322-1344. · Zbl 1140.91381
[3] F. Delarue, {\it On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case}, Stochastic Process. Appl., 99 (2002), pp. 209-286. · Zbl 1058.60042
[4] L. Delong and C. Klüppelberg, {\it Optimal investment and consumption in a Black-Scholes market with Lévy-driven stochastic coefficients}, Ann. Appl. Probab., 18 (2008), pp. 879-908. · Zbl 1140.93048
[5] W. Fleming and D. Hernández-Hernández, {\it An optimal consumption model with stochastic volatility}, Finance Stoch., 7 (2003), pp. 245-262. · Zbl 1035.60028
[6] W. Fleming and R. Rishel, {\it Deterministic and Stochastic Optimal Control}, Springer-Verlag, Berlin, 1975. · Zbl 0323.49001
[7] J. P. Fouque, G. Papanicoloau, and R. Sircar, {\it Derivatives in Financial Markets with Stochastic Volatility}, Cambridge University Press, Cambridge, UK, 2000. · Zbl 0954.91025
[8] M. I. Freidlin, {\it Functional Integration and Partial Differential Equations}, Princeton University Press, Princeton, NJ, 1985. · Zbl 0568.60057
[9] D. Hernández-Hernández and A. Schied, {\it Robust utility maximization in a stochastic factor model}, Statist. Decisions, 24 (2006), pp. 109-125. · Zbl 1186.91229
[10] J. Jackwerth and M. Rubinstein, {\it Recovering probability distributions from contemporaneous security prices}, J. Finance, 40 (1996), pp. 455-480.
[11] Yu. M. Kabanov and S. M. Pergamenshchikov, {\it Two-Scale Stochastic Systems. Asymptotic Analysis and Control}, Springer-Verlag, Berlin, 2003. · Zbl 1033.60001
[12] I. Karatzas and S. E. Shreve, {\it Brownian Motion and Stochastic Calculus}, 2nd ed., Grad. Texts Math. 113, Springer-Verlag, New York, 1991. · Zbl 0734.60060
[13] I. Karatzas and S. E. Shreve, {\it Methods of Mathematical Finance}, Springer, Berlin, 1998. · Zbl 0941.91032
[14] V. Konev and S. Pergamenshchikov, {\it Estimation of the parameters of diffusion processes}, in Methods of Economical Analysis, S. Aivazian, ed., Central Economical and Mathematical Institute RAS, Moscow, 1992, pp. 3-31.
[15] R. Korn, {\it Optimal Portfolios}, World Scientific, Singapore, 1997. · Zbl 0931.91017
[16] H. Kraft and M. Steffensen, {\it Portfolio problems stopping at first hitting time with application to default risk}, Math. Methods Oper. Res., 63 (2006), pp. 123-150. · Zbl 1136.91452
[17] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva, {\it Linear and Quasilinear Equations of Parabolic Type}, translated from the Russian by S. Smith, Transl. Math. Monogr. 23, Amer. Math. Soc., Providence, RI, 1968. · Zbl 0174.15403
[18] R. S. Liptser and A. N. Shiryaev, {\it Statistics of Random Process I. General Theory}, Springer-Verlag, Berlin, 2000.
[19] R. S. Liptser and A. N. Shiryaev, {\it Statistics of Random Process II. Applications}, Springer-Verlag, Berlin, 2000.
[20] M. Bardi, A. Cesaroni, and L. Manca, {\it Convergence by viscosity methods in multiscale financial models with stochastic volatility}, SIAM J. Financial Math., 1 (2010), pp. 230-265. · Zbl 1189.35020
[21] J. Ma, P. Protter, and J. Yong, {\it Solving forward-backward stochastic differential equations explicitly — a four step scheme}, Probab. Theory Related Fields, 98 (1994), pp. 339-359. · Zbl 0794.60056
[22] R. Merton, {\it Optimal consumption and portfolio rules in a continuous time model}, J. Econom. Theory, 3 (1971), pp. 373-413. · Zbl 1011.91502
[23] A. A. Novikov, {\it Sequential estimation of parameters of diffusion processes}, Theory Probab. Appl., 16 (1971), pp. 391-393. · Zbl 0237.62053
[24] A. Pazy, {\it Functional Integration and Partial Differential Equations}, Springer, New York, 1983. · Zbl 0516.47023
[25] H. Pham, {\it Smooth solutions to optimal investment models with stochastic volatilities and portofolio constraints}, Appl. Math. Optim., 46 (2002), pp. 55-78. · Zbl 1014.91038
[26] E. L. Presman and S. P. Sethi, {\it Risk-aversion behavior in consumption/investment problems}, Math. Finance, 1 (1991), pp. 100-124. · Zbl 0900.90054
[27] L. C. G. Rogers, {\it Optimal Investment}, Springer-Verlag, Berlin, 2013. · Zbl 1264.91119
[28] M. Rubinstein, {\it Nonparametric tests of alternative option pricing models}, J. Finance, 51 (1985), pp. 1611-1631.
[29] S. P. Sethibͅ M. I. Taksarbͅ and E. L. Presman, {\it Explicit solution of a general consumption/portfolio problem with subsistence consumption and bankruptcy}, J. Econom. Dynam. Control, 16 (1992), pp. 747-768. · Zbl 0762.90005
[30] R. Sircar and T. Zariphopoulou, {\it Bounds and asymptotic approximations for utility prices when volatility is random}, SIAM J. Control Optim., 43 (2004), pp. 1328-1353. · Zbl 1101.91049
[31] T. Zariphopoulou, {\it A solution approach to valuation with unhedgeable risk}, Finance Stoch., 5 (2001), pp. 61-82. · Zbl 0977.93081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.