×

A new class of plastic flow evolution equations for anisotropic multiplicative elastoplasticity based on the notion of a corrector elastic strain rate. (English) Zbl 1480.74031

Summary: We herein present a new continuum theory for both isotropic and anisotropic elastoplasticity at large strains. The new framework has the following properties: (1) It is valid for non-moderate large strains, (2) it is valid for both elastic and plastic anisotropy, (3) its description in rate form is parallel to that of the infinitesimal formulation, (4) it is compatible with the multiplicative decomposition, (5) results in a similar framework in any stress-strain work-conjugate pair, (6) it is consistent with the principle of maximum plastic dissipation and (7) does not impose any restriction on the plastic spin, which must be given as an independent constitutive equation. Furthermore, when formulated using logarithmic strain measures in the intermediate configuration: (8) it may be easily integrated using a classical backward-Euler rule resulting in an additive update. All these properties are obtained simply considering a plastic evolution in terms of a corrector rate of the proper elastic strain. This new continuum theory is a natural framework for elastoplasticity of both metals and soft materials and solves the (so-coined by Simo) rate issue.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)

Software:

TENSOR
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Simó, J. C., Numerical analysis and simulation of plasticity, (Ciarlet, PG; Lions, JL, Handbook of Numerical Analysis, volume VI (1998), North-Holland), 183-499 · Zbl 0930.74001
[2] Kojić, M.; Bathe, K. J., Inelastic Analysis of Solids and Structures. (2005), Springer: Springer Berlin
[3] J. Lubliner, Plasticity Theory. Courier Corporation, 2008.; J. Lubliner, Plasticity Theory. Courier Corporation, 2008.
[4] Simó, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer: Springer New York · Zbl 0934.74003
[5] Miñano, M.; Caminero, M. A.; Montáns, F. J., On the numerical implementation of the closest point projection algorithm in anisotropic elasto-plasticity with nonlinear mixed hardening., Finite Elem. Anal. Des., 121, 1-17 (2016)
[6] Shutov, A. V.; Ihlemann, J., Analysis of some basic approaches to finite strain elasto-plasticity in view of reference change., Int. J. Plast., 63, 183-197 (2014)
[7] Wilkins, M. L., Calculation of elastic-plastic flow., (Alder, B.; Fernback, S.; Rotenberg, M., Methods of Computational Physics, 3 (1964), Academic Press: Academic Press New York)
[8] Maenchen, G.; Sacks, S., The tensor code., (Alder, B.; Fernback, S.; Rotenberg, M., Methods of Computational Physics, 3 (1964), Academic Press: Academic Press New York)
[9] Krieg, R. D.; Key, S. W., Implementation of a time dependent plasticity theory into structural computer programs, (Stricklin, J. A.; Saczlski, K. J., Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects, AMD-20 (1976), ASME: ASME New York)
[10] Truesdell, C.; Noll, W., The nonlinear field theories, Handbuch der Physik 111/3 (1965), Springer: Springer Berlin · Zbl 0779.73004
[11] Hibbitt, H. D.; Marcal, P. V.; Rice, J. R., A finite element formulation for problems of large strain and large displacement, Int. J. Solids Struct., 6, 8, 1069-1086 (1970) · Zbl 0214.24603
[12] McMeeking, R. M.; Rice, J. R., Finite-element formulations for problems of large elastic-plastic deformation., Int. J. Solids Struct., 11, 5, 601-616 (1975) · Zbl 0303.73062
[13] Key, S. W.; Krieg, R. D., On the numerical implementation of inelastic time dependent and time independent, finite strain constitutive equations in structural mechanics., Comput. Methods Appl. Mech. Eng., 33, 1, 439-452 (1982) · Zbl 0504.73054
[14] Taylor, L. M.; Becker, E. B., Some computational aspects of large deformation, rate-dependent plasticity problems., Comput. Methods Appl. Mech. Eng., 41, 3, 251-277 (1983) · Zbl 0509.73046
[15] Simó, J. C.; Pister, K. S., Remarks on rate constitutive equations for finite deformation problems: computational implications., Comput. Methods Appl. Mech. Eng., 46, 2, 201-215 (1984) · Zbl 0525.73042
[16] Kojić, M.; Bathe, K. J., Studies of finite element procedures—stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian Jaumann formulation., Comput. Struct., 26, 1, 175-179 (1987) · Zbl 0609.73074
[17] Hughes, T. J.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Int. J. Numer. Methods Eng., 15, 12, 1862-1867 (1980) · Zbl 0463.73081
[18] Pinsky, P. M.; Ortiz, M.; Pister, K. S., Numerical integration of rate constitutive equations in finite deformation analysis., Comput. Methods Appl. Mech. Eng., 40, 2, 137-158 (1983) · Zbl 0504.73057
[19] Xiao, H.; Bruhns, O. T.; Meyers, A., Hypo-elasticity model based upon the logarithmic stress rate., J. Elast., 47, 1, 51-68 (1997) · Zbl 0888.73011
[20] Bruhns, O. T.; Xiao, H.; Meyers, A., Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate, Int. J. Plast., 15, 5, 479-520 (1999) · Zbl 1036.74010
[21] H. Xiao, O.T. Bruhns, A. Meyers, The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate., Proc. R. Soc. Lond. A 456(2000) 1865-1882.; H. Xiao, O.T. Bruhns, A. Meyers, The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate., Proc. R. Soc. Lond. A 456(2000) 1865-1882. · Zbl 1046.74010
[22] Brepols, T.; Vladimirov, I. N.; Reese, S., Numerical comparison of isotropic hypo-and hyperelastic-based plasticity models with application to industrial forming processes., Int. J. Plast., 63, 18-48 (2014)
[23] Teeriaho, J. P., An extension of a shape memory alloy model for large deformations based on an exactly integrable Eulerian rate formulation with changing elastic properties., Int. J. Plast., 43, 153-176 (2013)
[24] Xiao, H.; Wang, X. M.; Wang, Z. L.; Yin, Z. N., Explicit, comprehensive modeling of multi-axial finite strain pseudo-elastic SMAs up to failure., Int. J. Solids Struct., 88, 215-226 (2016)
[25] Zhu, Y.; Kang, G.; Yu, C.; Poh, L. H., Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues., J. Mech. Behav. Biomed. Mater., 61, 397-409 (2016)
[26] Rubinstein, R.; Atluri, S. N., Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analyses., Comput. Methods Appl. Mech. Eng., 36, 3, 277-290 (1983) · Zbl 0486.73081
[27] Argyris, J. H.; Doltsinis, J. S., On the large strain inelastic analysis in natural formulation part i: quasistatic problems., Comput. Methods Appl. Mech. Eng., 20, 2, 213-251 (1979) · Zbl 0437.73065
[28] Simó, J. C.; Ortiz, M., A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations., Comput. Methods Appl. Mech. Eng., 49, 2, 221-245 (1985) · Zbl 0566.73035
[29] G. Gabriel, K.J. Bathe, Some computational issues in large strain elasto-plastic analysis. Comput. Struct., 1995, 56, 2, 249-267.; G. Gabriel, K.J. Bathe, Some computational issues in large strain elasto-plastic analysis. Comput. Struct., 1995, 56, 2, 249-267. · Zbl 0918.73148
[30] Green, A. E.; Naghdi, P. M., A general theory of an elastic-plastic continuum, Arch. Ration. Mech. Anal., 18, 4, 251-281 (1965) · Zbl 0133.17701
[31] Lee, E. H., Elastic-plastic deformations at finite strains, J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603
[32] Bilby, B. A.; Bullough R, R.; Smith, E., Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 231, 263-273 (1955)
[33] Miehe, C., A formulation of finite elastoplasticity based on dual co-and contra-variant eigenvector triads normalized with respect to a plastic metric., Comput. Methods Appl. Mech. Eng., 159, 3, 223-260 (1998) · Zbl 0948.74009
[34] Papadopoulos, P.; Lu, J., A general framework for the numerical solution of problems in finite elasto-plasticity., Comput. Methods Appl. Mech. Eng., 159, 1, 1-18 (1998) · Zbl 0954.74068
[35] Papadopoulos, P.; Lu, J., On the formulation and numerical solution of problems in anisotropic finite plasticity., Comput. Methods Appl. Mech. Eng., 190, 37, 4889-4910 (2001) · Zbl 1001.74020
[36] Miehe, C.; Apel, N.; Lambrecht, M., Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials., Comput. Methods Appl. Mech. Eng., 191, 47, 5383-5425 (2002) · Zbl 1083.74518
[37] Löblein, J.; Schröder, J.; Gruttmann, F. F., Application of generalized measures to an orthotropic finite elasto-plasticity model., Comput. Mater. Sci., 28, 3, 696-703 (2003)
[38] Sansour, C.; Wagner, W., Viscoplasticity based on additive decomposition of logarithmic strain and unified constitutive equations: theoretical and computational considerations with reference to shell applications, Comput. Struct., 81, 15, 1583-1594 (2003)
[39] Ulz, M. H., A Green-Naghdi approach to finite anisotropic rate-independent and rate-dependent thermo-plasticity in logarithmic Lagrangean strain-entropy space., Comput. Methods Appl. Mech. Eng., 198, 41, 3262-3277 (2009) · Zbl 1230.74047
[40] Green, A. E.; Naghdi, P. M., Some remarks on elastic-plastic deformation at finite strain., Int. J. Eng. Sci., 9, 12, 1219-1229 (1971) · Zbl 0226.73022
[41] Schmidt, I., Some comments on formulations of anisotropic plasticity., Comput. Mater. Sci., 32, 3, 518-523 (2005)
[42] Itskov, M., On the application of the additive decomposition of generalized strain measures in large strain plasticity, Mech. Res. Commun., 31, 5, 507-517 (2004) · Zbl 1073.74019
[43] Neff, P.; Ghiba, I. D., Loss of ellipticity for non-coaxial plastic deformations in additive logarithmic finite strain plasticity, Int. J. Non-Linear Mech., 81, 122-128 (2016)
[44] Taylor, G. I., Analysis of plastic strain in a cubic crystal., (Lessels, J. M., Stephen Timoshenko 60th Anniversary Volume (1938), Macmillan: Macmillan New York) · Zbl 0022.08604
[45] Rice, J. R., Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity., J. Mech. Phys. Solids, 19, 6, 433-455 (1971) · Zbl 0235.73002
[46] Mandel, J., Thermodynamics and plasticity, (Domingers, J. J.D.; Nina, N. R.; Whitelaw, J. H., Foundations of Continuum Thermodynamics (1974), Macmillan: Macmillan London), 283-304
[47] Simo, J. C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: part i. continuum formulation., Comput. Methods Appl. Mech. Eng., 66, 2, 199-219 (1988) · Zbl 0611.73057
[48] Simo, J. C.; Miehe, C., Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation., Comput. Methods Appl. Mech. Eng., 98, 1, 41-104 (1992) · Zbl 0764.73088
[49] Anand., L., On H. Hencky’s approximate strain-energy function for moderate deformations., J. Appl. Mech., 46, 1, 78-82 (1979) · Zbl 0405.73032
[50] Anand, L., Moderate deformations in extension-torsion of incompressible isotropic elastic materials, J. Mech. Phys. Solids, 34, 3, 293-304 (1986)
[51] Rice, J. R., Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms., Constitutive Equations in Plasticity, 23-79 (1975), Cambridge: Massachusetts Institute of Technology Press
[52] Rolph, W. D.; Bathe, K. J., On a large strain finite element formulation for elasto-plastic analysis., (K. J. Willam, e., Constitutive Equations: Macro and Computational Aspects, AMD (1984), ASME: ASME New York), 131-147
[53] Weber, G.; Anand, L., Finite deformation constitutive equations and a time integration procedure for isotropic hyperelastic-viscoplastic solids, Comput. Methods Appl. Mech. Eng., 79, 2, 173-202 (1990) · Zbl 0731.73031
[54] Eterovic, A. L.; Bathe, K. J., A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures., Int. J. Numer. Methods Eng., 30, 6, 1099-1114 (1990) · Zbl 0714.73035
[55] Perić, D.; Owen, D. R.J.; Honnor, M. E., A model for finite strain elasto-plasticity based on logarithmic strains: computational issues, Comput. Methods Appl. Mech. Eng., 94, 1, 35-61 (1992) · Zbl 0747.73020
[56] Cuitiño, A.; Ortiz., M., A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics., Eng. Comput., 9, 4, 437-451 (1992)
[57] Simó, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Methods Appl. Mech. Eng., 99, 1, 61-112 (1992) · Zbl 0764.73089
[58] Bruhns, O. T., The multiplicative decomposition of the deformation gradient in plasticity—origin and limitations, (Altenbach, H.; Matsuda, T.; Okumura, D., Advanced Structured Materials, 64 (2015), Springer International Publishing), 37-66
[59] Eckart, C., The thermodynamics of irreversible processes. IV. the theory of elasticity and anelasticity, Phys. Rev., 73, 4, 373-382 (1948) · Zbl 0032.22201
[60] Besseling, J. F., A thermodynamic approach to rheology., (Parkus, H.; Sedov, L. I., Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids (1968), Springer: Springer Vienna), 16-53 · Zbl 0264.76005
[61] Leonov, A. I., Nonequilibrium thermodynamics and rheology of viscoelastic polymer media., Rheol. acta, 15, 2, 85-98 (1976) · Zbl 0351.73001
[62] Rubin, M. B.; Vorobiev, O.; Vitali, E., A thermomechanical anisotropic model for shock loading of elastic-plasticand elastic-viscoplastic materials with application to jointed rock., Comput. Mech., 58, 1, 107-128 (2016) · Zbl 1398.74073
[63] Caminero, M. A.; Montáns, F. J.; Bathe, K. J., Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures., Comput. Struct., 89, 11, 826-843 (2011)
[64] Chatti, S.; Dogui, A.; Dubujet, P.; Sidoroff, F., An objective incremental formulation for the solution of anisotropic elastoplastic problems at finite strain., Commun. Numer. Methods Eng., 17, 12, 845-862 (2001) · Zbl 1017.74070
[65] Han, C. S.; Chung, K.; Wagoner, R. H.; Oh, S. I., A multiplicative finite elasto-plastic formulation with anisotropic yield functions., Int. J. Plast., 19, 2, 197-211 (2003) · Zbl 1032.74523
[66] Eidel, B.; Gruttmann, F., Elastoplastic orthotropy at finite strains: multiplicative formulation and numerical implementation., Comput. Mater. Sci., 28, 3, 732-742 (2003)
[67] Menzel, A.; Ekh, M.; Runesson, K.; Steinmann, P., A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage, Int. J. Plast., 21, 3, 397-434 (2005) · Zbl 1089.74014
[68] Sansour, C.; Karšaj, I.; Sorić, J., A formulation of anisotropic continuum elastoplasticity at finite strains. part i: Modelling, Int. J. Plast., 22, 12, 2346-2365 (2006) · Zbl 1229.74015
[69] Montáns, F. J.; Bathe, K. J., Towards a model for large strain anisotropic elasto-plasticity., (Oñate, E.; Owen, R., Computational Plasticity (2007), Springer: Springer Netherlands), 13-36
[70] Kim, D. N.; Montáns, F. J.; Bathe, K. J., Insight into a model for large strain anisotropic elasto-plasticity., Comput. Mech., 44, 5, 651-668 (2009) · Zbl 1171.74008
[71] Vladimirov, I. N.; Pietryga, M. P.; Reese, S., Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming., Int. J. Plast., 26, 5, 659-687 (2010) · Zbl 1426.74073
[72] Mandel, J., Plasticité Classique et Viscoplasticité. Course held at the Department of Mechanics of Solids (1972), New York: New York Springer · Zbl 0298.73048
[73] Latorre, M.; Montáns, F. J., Stress and strain mapping tensors and general work-conjugacy in large strain continuum mechanics., Appl. Math. Model., 40, 5, 3938-3950 (2016) · Zbl 1459.74029
[74] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis (2008), Cambridge University Press · Zbl 1142.74002
[75] Lubliner, J., Normality rules in large-deformation plasticity., Mech. Mater., 5, 1, 29-34 (1986)
[76] Latorre, M.; Montáns, F. J., On the interpretation of the logarithmic strain tensor in an arbitrary system of representation, Int. J. Solids Struct., 51, 7, 1507-1515 (2014)
[77] Latorre, M.; Montáns, F. J., Anisotropic finite strain viscoelasticity based on the sidoroff multiplicative decomposition and logarithmic strains., Comput. Mech., 56, 3, 503-531 (2015) · Zbl 1326.74031
[78] Sánz, M. A.; Montáns, F. J.; Latorre, M., Computational anisotropic hardening multiplicative elastoplasticity basedon the corrector elastic logarithmic strain rate, Comput. Methods Appl. Mech. Eng., 320, 82-121 (2017) · Zbl 1439.74065
[79] Pastor, M.; Zienkiewicz, O. C.; Chan, A. H.C., Generalized plasticity and the modelling of soil behavior., Int. J. Numer. Anal. Methods Geomech., 14, 3, 151-190 (1990) · Zbl 0702.73052
[80] Borja, R. I., Plasticity-Modeling and Computation (2013), Springer: Springer Berlin · Zbl 1279.74003
[81] Montáns, F. J.; Benítez, J. M.; Caminero, M., A large strain anisotropic elastoplastic continuum theory for nonlinear kinematic hardening and texture evolution., Mech. Res. Commun., 43, 50-56 (2012)
[82] Menzel, A.; Steinmann, P., On the spatial formulation of anisotropic multiplicative elasto-plasticity., Comput. Methods Appl. Mech. Eng., 192, 31, 3431-3470 (2003) · Zbl 1054.74533
[83] Perić, D.; Dettmer, W., A computational model for generalized inelastic materials at finite strains combining elastic, viscoelastic and plastic material behaviour, 20, 5/6, 768-787 (2003) · Zbl 1044.74044
[84] Reese, S.; Govindjee, S., A theory of finite viscoelasticity and numerical aspects, Int. J. Solids Struct., 35, 26, 3455-3482 (1998) · Zbl 0918.73028
[85] Holmes, D. W.; Loughran, J. G., Numerical aspects associated with the implementation of a finite strain, elasto-viscoelastic-viscoplastic constitutive theory in principal stretches, Int. J. Numer. Methods Eng., 83, 3, 366-402 (2010) · Zbl 1193.74149
[86] Shutov, A. S.; Landgraf, R.; Ihlemann, J., An explicit solution for implicit time stepping in multiplicative finite strain viscoelasticity, Comput. Methods Appl. Mech. Eng., 256, 213-225 (2013) · Zbl 1286.76017
[87] Montáns, F. J.; Bathe, K. J., Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin., Int. J. Numer. Methods Eng., 63, 2, 159-196 (2005) · Zbl 1118.74350
[88] Latorre, M.; Montáns, F. J., What-you-prescribe-is-what-you-get orthotropic hyperelasticity., Comput. Mech., 53, 6, 1279-1298 (2014) · Zbl 1398.74028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.