×

zbMATH — the first resource for mathematics

Tautological systems and free divisors. (English) Zbl 1451.14054
The paper under review deals with systems of differential equations defined by certain prehomogeneous vector spaces endowed with actions of algebraic groups admitting open dense orbits. Such \(\mathcal D\)-modules can be considered as examples of the so-called tautological systems studied in many works (see [M. Kapranov, in: Integrable systems and algebraic geometry. Proceedings of the 41st Taniguchi symposium, Kobe, Japan, June 30–July 4, 1997, and in Kyoto, Japan, July 7–11 1997. Singapore: World Scientific. 236–281 (1998; Zbl 0987.33008); B. H. Lian et al., J. Eur. Math. Soc. (JEMS) 15, No. 4, 1457–1483 (2013; Zbl 1272.14033)]).
In fact, the authors investigate the case of reductive groups whose orbits have complements which are linear free divisors satisfying the strongly Koszul condition [M. Granger and M. Schulze, Publ. Res. Inst. Math. Sci. 46, No. 3, 479–506 (2010; Zbl 1202.14046)]. Under these assumptions it is proved that the associated tautological systems underlie mixed Hodge modules. Moreover, the authors give an explicit representation of the corresponding \(\mathcal D\)-modules similarly to the case of GKZ-systems [T. Reichelt, Compos. Math. 150, No. 6, 911–941 (2014; Zbl 1315.14016)].
MSC:
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)
14M17 Homogeneous spaces and generalizations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adolphson, A., Hypergeometric functions and rings generated by monomials, Duke Math. J., 73, 2, 269-290 (1994) · Zbl 0804.33013
[2] Bloch, S.; Huang, A.; Lian, B. H.; Srinivas, V.; Yau, S.-T., On the holonomic rank problem, J. Differential Geom., 97, 1, 11-35 (2014) · Zbl 1318.32027
[3] Buchweitz, R.-O.; Mond, D., Linear free divisors and quiver representations, (Lossen, C.; Pfister, G., Singularities and Computer Algebra (Cambridge). Singularities and Computer Algebra (Cambridge), London Math. Soc. Lecture Note Ser., vol. 324 (2006), Cambridge Univ. Press), 41-77, papers from the conference held at the University of Kaiserslautern, Kaiserslautern, October 18-20, 2004 · Zbl 1101.14013
[4] Calderón Moreno, F. J., Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. Éc. Norm. Supér. (4), 32, 5, 701-714 (1999) · Zbl 0955.14013
[5] Calderón Moreno, F. J.; Narváez Macarro, L., The module \(D f^s\) for locally quasi-homogeneous free divisors, Compos. Math., 134, 1, 59-74 (2002) · Zbl 1017.32023
[6] Calderón Moreno, F. J.; Narváez Macarro, L., On the logarithmic comparison theorem for integrable logarithmic connections, Proc. Lond. Math. Soc., 98, 3, 585-606 (2009) · Zbl 1166.32005
[7] Castaño Domínguez, A.; Sevenheck, C., Irregular Hodge filtration of some confluent hypergeometric systems, J. Inst. Math. Jussieu (2017), in press
[8] Castaño Domínguez, A.; Reichelt, T.; Sevenheck, C., Examples of hypergeometric twistor \(D\)-modules, Algebra Number Theory (2018), in press
[9] Castro Jiménez, F. J.; Ucha Enríquez, J. M., Testing the logarithmic comparison theorem for free divisors, Exp. Math., 13, 4, 441-449 (2004) · Zbl 1071.14024
[10] de Gregorio, I.; Mond, D.; Sevenheck, C., Linear free divisors and Frobenius manifolds, Compos. Math., 145, 5, 1305-1350 (2009) · Zbl 1238.32022
[11] Dettweiler, M.; Sabbah, C., Hodge theory of the middle convolution, Publ. Res. Inst. Math. Sci., 49, 4, 761-800 (2013) · Zbl 1307.14015
[12] Gel’fand, I. M.; Kapranov, M. M.; Zelevinsky, A. V., Generalized Euler integrals and \(A\)-hypergeometric functions, Adv. Math., 84, 2, 255-271 (1990) · Zbl 0741.33011
[13] Givental, A., A mirror theorem for toric complete intersections, (Topological Field Theory, Primitive Forms and Related Topics. Topological Field Theory, Primitive Forms and Related Topics, Kyoto, 1996. Topological Field Theory, Primitive Forms and Related Topics. Topological Field Theory, Primitive Forms and Related Topics, Kyoto, 1996, Progr. Math., vol. 160 (1998), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 141-175 · Zbl 0936.14031
[14] Granger, M.; Schulze, M., On the symmetry of \(b\)-functions of linear free divisors, Publ. Res. Inst. Math. Sci., 46, 3, 479-506 (2010), MR 2760735 · Zbl 1202.14046
[15] Granger, M.; Mond, D.; Nieto, A.; Schulze, M., Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble), 59, 1, 811-850 (2009) · Zbl 1163.32014
[16] Hotta, R., Equivariant \(D\)-modules (1998), preprint
[17] Iritani, H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math., 222, 3, 1016-1079 (2009) · Zbl 1190.14054
[18] Kapranov, M., Hypergeometric functions on reductive groups, (Saito, M.-H.; Shimizu, Y.; Ueno, K., Integrable Systems and Algebraic Geometry. Integrable Systems and Algebraic Geometry, Kobe/Kyoto, 1997 (1998), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 236-281 · Zbl 0987.33008
[19] Kimura, T., Introduction to Prehomogeneous Vector Spaces, Translations of Mathematical Monographs, vol. 215 (2003), American Mathematical Society: American Mathematical Society Providence, RI, translated from the 1998 Japanese original by Makoto Nagura and Tsuyoshi Niitani and revised by the author
[20] Lian, B. H.; Yau, S.-T., Period integrals of CY and general type complete intersections, Invent. Math., 191, 1, 35-89 (2013) · Zbl 1276.32004
[21] Lian, B. H.; Song, R.; Yau, S.-T., Periodic integrals and tautological systems, J. Eur. Math. Soc. (JEMS), 15, 4, 1457-1483 (2013) · Zbl 1272.14033
[22] Mustaţă, M.; Popa, M., Hodge ideals, Mem. Amer. Math. Soc. (2016), in press
[23] Narváez Macarro, L., A duality approach to the symmetry of Bernstein-Sato polynomials of free divisors, Adv. Math., 281, 1242-1273 (2015) · Zbl 1327.14090
[24] Popa, M., \(D\)-modules in birational geometry, (Sirakov, B.; de Souza, P. N.; Viana, M., Proceedings of the International Congress of Mathematicians (ICM 2018), vol. 2 (2019), World Scientific), 781-806
[25] Reichelt, T., Laurent polynomials, GKZ-hypergeometric systems and mixed Hodge modules, Compos. Math., 150, 911-941 (2014) · Zbl 1315.14016
[26] Reichelt, T.; Sevenheck, C., Hypergeometric Hodge modules, Algebr. Geom. (2015), in press
[27] Reichelt, T.; Sevenheck, C., Logarithmic Frobenius manifolds, hypergeometric systems and quantum \(D\)-modules, J. Algebraic Geom., 24, 2, 201-281 (2015) · Zbl 1349.14139
[28] Reichelt, T.; Sevenheck, C., Non-affine Landau-Ginzburg models and intersection cohomology, Ann. Sci. Éc. Norm. Supér. (4), 50, 3, 665-753 (2017) · Zbl 1395.14033
[29] Reichelt, T.; Sevenheck, C.; Walther, U., On the \(b\)-functions of hypergeometric systems, Int. Math. Res. Not. IMRN, 21, 6535-6555 (2018) · Zbl 1417.32007
[30] Rinehart, G. S., Differential forms on general commutative algebras, Trans. Amer. Math. Soc., 108, 195-222 (1963) · Zbl 0113.26204
[31] Sabbah, C., Hypergeometric periods for a tame polynomial, Port. Math. (N.S.), 63, 2, 173-226 (2006), written in 1998 · Zbl 1113.14011
[32] Sabbah, C., Irregular Hodge theory, Mém. Soc. Math. Fr. (N.S.), 156 (2018), (with the collaboration of Jeng-Daw Yu) · Zbl 1422.14003
[33] Saito, K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., 27, 2, 265-291 (1980) · Zbl 0496.32007
[34] Schulze, M.; Walther, U., Hypergeometric \(D\)-modules and twisted Gauß-Manin systems, J. Algebra, 322, 9, 3392-3409 (2009) · Zbl 1181.13023
[35] Sevenheck, C., Bernstein polynomials and spectral numbers for linear free divisors, Ann. Inst. Fourier (Grenoble), 61, 1, 379-400 (2011) · Zbl 1221.34237
[36] Sevenheck, C., Duality of Gauß-Manin systems associated to linear free divisors, Math. Z., 274, 1-2, 249-261 (2013), MR 3054328 · Zbl 1272.32026
[37] Zamaere, C. B.; Matusevich, L. F.; Walther, U., On normalized Horn systems (2018), preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.