×

Linear stability of Schwarzschild spacetime: decay of metric coefficients. (English) Zbl 1482.53084

Summary: In this paper, we study the theory of linearized gravity and prove the linear stability of Schwarzschild black holes as solutions of the vacuum Einstein equations. In particular, we prove that solutions to the linearized vacuum Einstein equations centered at a Schwarzschild metric, with suitably regular initial data, remain uniformly bounded and decay to a linearized Kerr metric on the exterior region. We employ Hodge decomposition to split the solution into closed and co-closed portions, respectively identified with even-parity and odd-parity solutions in the physics literature. For the co-closed portion, we extend previous results by the first two authors, deriving Regge-Wheeler type equations for two gauge-invariant master quantities without the earlier paper’s need of axisymmetry. For the closed portion, we build upon earlier work of Zerilli and Moncrief, wherein the authors derive an equation for a gauge-invariant master quantity in a spherical harmonic decomposition. We work with gauge-invariant quantities at the level of perturbed connection coefficients, with the initial value problem formulated on Cauchy data sets. With the choice of an appropriate gauge in each of the two portions, decay estimates on these decoupled quantities are used to establish decay of the metric coefficients of the solution, completing the proof of linear stability. Our result differs from that of Dafermos-Holzegel-Rodnianski, both in our choice of gauge and in our identification and utilization of lower-level gauge-invariant master quantities.

MSC:

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
83C57 Black holes
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] S. Aksteiner, L. Andersson, T. B¨ackdahl, A. G. Shah, and B. F. Whiting. Gauge-invariant perturbations of Schwarzschild spacetime.arXiv preprint, 2016. arXiv:1611.08291.
[2] L. Andersson and P. Blue. Hidden symmetries and decay for the wave equation on the Kerr spacetime.Ann. of Math. (2), 182(3):787-853, 2015. MR3418531, Zbl 1373.35307. · Zbl 1373.35307
[3] P. Blue and A. Soffer. The wave equation on the Schwarzschild metric II. Local decay for the spin-2 Regge-Wheeler equation.Journal of Mathematical Physics, 46(1), 2005. MR2113761, Zbl 1076.58020. · Zbl 1076.58020
[4] P. Blue and J. Sterbenz. Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space.Comm. Math. Phys., 268(2):481-504, 2006. MR2259204, Zbl 1123.58018. · Zbl 1123.58018
[5] S. Chandrasekhar.The Mathematical Theory of Black Holes. Oxford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University Press, New York, 1998. MR1647491, Zbl 0912.53053.
[6] D. Christodoulou and S. Klainerman.The global nonlinear stability of the Minkowski space, volume 41 ofPrinceton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. MR1316662, Zbl 0827.53055. · Zbl 0827.53055
[7] C. T. Cunningham, R. H. Price, and V. Moncrief. Radiation from collapsing relativistic stars. I - Linearized odd-parity radiation.Astrophys. J., 224:643- 667, 1978.
[8] M. Dafermos, G. Holzegel, and I. Rodnianski. The linear stability of the Schwarzschild solution to gravitational perturbations.arXiV preprint, 2016. arXiv:1601.06467. · Zbl 1419.83023
[9] M. Dafermos and I. Rodnianski. The red-shift effect and radiation decay on black hole spacetimes.Comm. Pure Appl. Math., 62(7):859-919, 2009. MR2527808, Zbl 1169.83008. · Zbl 1169.83008
[10] M. Dafermos and I. Rodnianski. Lectures on black holes and linear waves. In Evolution equations, volume 17 ofClay Math. Proc., pages 97-205. Amer. Math. Soc., Providence, RI, 2013. MR3098640, Zbl 1300.83004. · Zbl 1300.83004
[11] M. Dafermos, I. Rodnianski, and Y. Shlapentokh-Rothman. Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case |a|< M.Ann. of Math. (2), 183(3):787-913, 2016. MR3488738, Zbl 1347.83002. · Zbl 1347.83002
[12] R. Donninger, W. Schlag, and A. Soffer. On pointwise decay of linear waves on a Schwarzschild black hole background.Comm. Math. Phys., 309:51-86, 2012. MR2864787, Zbl 1242.83054. · Zbl 1242.83054
[13] F. Finster, N. Kamran, J. Smoller, and S.-T. Yau. Decay of solutions of the wave equation in the Kerr geometry.Comm. Math. Phys., 264(2):465-503, 2006. MR2395483, Zbl 1194.83015. · Zbl 1194.83015
[14] F. Finster and J. Smoller. Decay of solutions of the Teukkolsky equation for higher spin in the Schwarzschild geometry.Adv. Theor. Math. Phys, 13(1):71- 110, 2009. MR2471853, Zbl 1178.81205. · Zbl 1178.81205
[15] F. Finster and J. Smoller. Linear Stability of the Non-Extreme Kerr Black Hole. arXiv preprint, 2016. arXiv:1606.08005. · Zbl 1387.83045
[16] J. L. Friedman and M. S. Morris. Schwarzschild perturbations die in time. Journal of Mathematical Physics, 41(11):7529-7534, 2000. MR1788589, Zbl 0978.83020. · Zbl 0978.83020
[17] P.-K. Hung and J. Keller. The linear stability of Schwarzschild spacetime subject to axial perturbations.arXiv preprint, 2016. arXiv:1610.08547.
[18] T. W. Johnson. The Regge-Wheeler and Zerilli Equations.Early Stage Assessment, Imperial College London, 2015.
[19] B. S. Kay and R. M. Wald. Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2-sphere.Classical Quantum Gravity, 4(4):893-898, 1987. MR0895907, Zbl 0647.53065. · Zbl 0647.53065
[20] M. D. Kruskal. Maximal extension of Schwarzschild metric.Phys. Rev. (2), 119:1743-1745, 1960. MR0115757, Zbl 0098.19001. · Zbl 0098.19001
[21] I. Laba and A. Soffer. Global existence and scattering for the nonlinear Schr¨odinger equation on Schwarzschild manifolds.Helv. Phys. Acta, 72(4):274- 294, 1999. MR1732864, Zbl 0976.58019. · Zbl 0976.58019
[22] C. O. Lousto and B. F. Whiting. Reconstruction of black hole metric perturbations from Weyl curvature.Phys. Rev., D66, 2002. MR1936628.
[23] J. Luk. Improved decay for solutions to the linear wave equation on a Schwarzschild black hole.Ann. Henri Poincar´e,11(5):805-880,2010. MR2736525, Zbl 1208.83068.
[24] K. Martel. Particles and Black Holes: Time-Domain Integration of the Equations of Black-Hole Perturbation Theory.Thesis, University of Guelph, 2003.
[25] K. Martel and E. Poisson. Gravitational perturbations of the Schwarzschild spacetime: a practical covariant and gauge-invariant formalism.Phys. Rev. D (3), 71(10), 2005. MR2152791.
[26] J. Marzuola, J. Metcalfe, D. Tataru, and M. Tohaneanu. Strichartz estimates on Schwarzschild black hole backgrounds.Comm. Math. Phys., 293(1):37-83, 2010. MR2563798, Zbl 1202.35327. · Zbl 1202.35327
[27] V. Moncrief. Gravitational perturbations of spherically symmetric systems. I. The exterior problem.Ann. Physics, 88:323-342, 1974. MR0371342.
[28] C. S. Morawetz. The limiting amplitude principle.Comm. Pure Appl. Math., 15:349-361, 1962. MR0151712, Zbl 0196.41202. · Zbl 0196.41202
[29] C. S. Morawetz. Time decay for the nonlinear Klein-Gordon equations.Proc. Roy. Soc. Ser. A, 306:291-296, 1968. MR0234136, Zbl 0157.41502. · Zbl 0157.41502
[30] T. Regge and J. A. Wheeler. Stability of a Schwarzschild singularity.Phys. Rev. (2), 108:1063-1069, 1957. MR0091832, Zbl 0079.41902. · Zbl 0079.41902
[31] D. Tataru and M. Tohaneanu. A local energy estimate on Kerr black hole backgrounds.Int. Math. Res. Not. IMRN, (2):248-292, 2011. MR2764864, Zbl 1209.83028. · Zbl 1209.83028
[32] S. A. Teukolsky. Perturbations of a rotating black hole. I. Fundamental equations for gravitational electromagnetic and neutrino field perturbations.Astrophys. J., 185:635-647, 1973.
[33] C. V. Vishveshwara. Stability of the Schwarzschild metric.Phys. Rev., D1:2870- 2879, 1970.
[34] R. M. Wald. On perturbations of a Kerr black hole.Journal of Mathematical Physics, 14(10):1453-1461, 1973.
[35] R. M. Wald. Construction of Solutions of Gravitational, Electromagnetic, Or Other Perturbation Equations from Solutions of Decoupled Equations.Phys. Rev. Lett., 41:203-206, 1978. MR0479258.
[36] R. M. Wald.General Relativity. University of Chicago Press, Chicago, IL, 1984. MR0757180, Zbl 0549.53001. · Zbl 0549.53001
[37] B. F. Whiting and L. R. Price. Metric reconstruction from Weyl scalars.Classical Quantum Gravity, 22(15):S589-S604, 2005. MR2158241, Zbl 1080.83016. · Zbl 1080.83016
[38] F. J. Zerilli. Effective potential for even-parity Regge-Wheeler gravitation perturbation equations.Phys. Rev. Lett., 24:737-738, 1970.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.