×

A trajectorial approach to the gradient flow properties of Langevin-Smoluchowski diffusions. (English) Zbl 1480.60237

Theory Probab. Appl. 66, No. 4, 668-707 (2022) and Teor. Veroyatn. Primen. 66, No. 4, 839-888 (2021).
Summary: We revisit the variational characterization of conservative diffusion as entropic gradient flow and provide for it a probabilistic interpretation based on stochastic calculus. It was shown by Jordan, Kinderlehrer, and Otto that, for diffusions of Langevin-Smoluchowski type, the Fokker-Planck probability density flow maximizes the rate of relative entropy dissipation, as measured by the distance traveled in the ambient space of probability measures with finite second moments, in terms of the quadratic Wasserstein metric. We obtain novel, stochastic-process versions of these features, valid along almost every trajectory of the diffusive motion in the backwards direction of time, using a very direct perturbation analysis. By averaging our trajectorial results with respect to the underlying measure on path space, we establish the maximal rate of entropy dissipation along the Fokker-Planck flow and measure exactly the deviation from this maximum that corresponds to any given perturbation. A bonus of our trajectorial approach is that it derives the HWI inequality relating relative entropy (H), Wasserstein distance (W), and relative Fisher information (I).

MSC:

60J60 Diffusion processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60J65 Brownian motion
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] B. Acciaio, M. Beiglböck, F. Penkner, W. Schachermayer, and J. Temme, A trajectorial interpretation of Doob’s martingale inequalities, Ann. Appl. Probab., 23 (2013), pp. 1494-1505, https://doi.org/10.1214/12-AAP878. · Zbl 1274.60136
[2] S. Adams, N. Dirr, M. Peletier, and J. Zimmer, Large deviations and gradient flows, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 20120341, https://doi.org/10.1098/rsta.2012.0341. · Zbl 1292.82023
[3] L. Ambrosio and N. Gigli, A user’s guide to optimal transport, in Modelling and Optimisation of Flows on Networks, Lecture Notes in Math. 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013, pp. 1-155, https://doi.org/10.1007/978-3-642-32160-3_1.
[4] L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed., Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2008, https://doi.org/10.1007/978-3-7643-8722-8. · Zbl 1145.35001
[5] L. Bachelier, Théorie de la spéculation, Ann. Sci. École Norm. Sup. (3), 17 (1900), pp. 21-86, https://doi.org/10.24033/asens.476. · JFM 31.0241.02
[6] L. Bachelier, Louis Bachelier’s Theory of Speculation: The Origins of Modern Finance, translated and with commentary by M. Davis and A. Etheridge, Princeton Univ. Press, Princeton, 2006, https://doi.org/10.1515/9781400829309.
[7] D. Bakry and M. Émery, Diffusions hypercontractives, in Séminaire de Probabilités XIX (Univ. Strasbourg, 1983/84), Lecture Notes in Math. 1123, Springer, Berlin, 1985, pp. 177-206, https://doi.org/10.1007/BFb0075847.
[8] M. Beiglböck and P. Siorpaes, Pathwise versions of the Burkholder-Davis-Gundy inequality, Bernoulli, 21 (2015), pp. 360-373, https://doi.org/10.3150/13-BEJ570. · Zbl 1352.60060
[9] L. Boltzmann, Vorlesungen über Gastheorie, Vol. I: Theorie der Gase mit ein-atomigen Molecülen, deren Dimensionen gegen die mittlere Weglänge verschwinden, J. A. Barth, Leipzig, 1896. · JFM 26.1056.06
[10] L. Boltzmann, Ueber die sogenannte \(H\)-curve, Math. Ann., 50 (1898), pp. 325-332, https://doi.org/10.1007/BF01448073. · JFM 29.0777.01
[11] L. Boltzmann, Vorlesungen über Gastheorie, Vol. II: Theorie van der Waals’; Gase mit Zusammengesetzten Molecülen, Gasdissociation; Schlussbemerkungen, J. A. Barth, Leipzig, 1898. · JFM 30.0818.02
[12] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), pp. 375-417, https://doi.org/10.1002/cpa.3160440402. · Zbl 0738.46011
[13] E. A. Carlen and A. Soffer, Entropy production by block variable summation and central limit theorems, Comm. Math. Phys., 140 (1991), pp. 339-371, https://doi.org/10.1007/BF02099503. · Zbl 0734.60024
[14] D. Cordero-Erausquin, Some applications of mass transport to Gaussian-type inequalities, Arch. Ration. Mech. Anal., 161 (2002), pp. 257-269, https://doi.org/10.1007/s002050100185. · Zbl 0998.60080
[15] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Wiley Ser. Telecommun. Signal Process., Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2006, https://doi.org/10.1002/047174882X. · Zbl 1140.94001
[16] P. Dai Pra and M. Pavon, Variational path-integral representations for the density of a diffusion process, Stochastics Stochastics Rep., 26 (1989), pp. 205-226, https://doi.org/10.1080/17442508908833558. · Zbl 0672.60075
[17] M. H. A. Davis and I. Karatzas, A deterministic approach to optimal stopping, in Probability, Statistics and Optimization Wiley Ser. Probab. Math. Statist. Probab. Math. Statist. 104, John Wiley & Sons, Chichester, NY, 1994, pp. 455-466. · Zbl 0855.60041
[18] M. Fathi, A gradient flow approach to large deviations for diffusion processes, J. Math. Pures Appl. (9), 106 (2016), pp. 957-993, https://doi.org/10.1016/j.matpur.2016.03.018. · Zbl 1357.35006
[19] H. Föllmer, An entropy approach to the time reversal of diffusion processes, in Stochastic Differential Systems (Marseille-Luminy, 1984), Lect. Notes Control Inf. Sci. 69, Springer, Berlin, 1985, pp. 156-163, https://doi.org/10.1007/BFb0005070. · Zbl 0562.60083
[20] H. Föllmer, Time reversal on Wiener space, in Stochastic Processes-Mathematics and Physics (Bielefeld, 1984), Lecture Notes in Math. 1158, Springer, Berlin, 1986, pp. 119-129, https://doi.org/10.1007/BFb0080212.
[21] H. Föllmer, Random fields and diffusion processes, in École d’Été de Probabilités de Saint-Flour XV-XVII, 1985-87, Lecture Notes in Math. 1362, Springer, Berlin, 1988, pp. 101-203, https://doi.org/10.1007/BFb0086180.
[22] J. Fontbona and B. Jourdain, A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations, Ann. Probab., 44 (2016), pp. 131-170, https://doi.org/10.1214/14-AOP969. · Zbl 1351.60070
[23] A. Friedman, Stochastic Differential Equations and Applications, Vol. 1, Probab. Math. Statist. 28, Academic Press, New York, 1975, https://doi.org/10.1016/C2013-0-07332-X. · Zbl 0323.60056
[24] C. Gardiner, Stochastic Methods. A Handbook for the Natural and Social Sciences, 4th rev. ed., Springer Ser. Synergetics 13, Springer-Verlag, Berlin, 2009. · Zbl 1181.60001
[25] I. Gentil, C. Léonard, and L. Ripani, Dynamical aspects of the generalized Schrödinger problem via Otto calculus-a heuristic point of view, Rev. Mat. Iberoam., 36 (2020), pp. 1071-1112, https://doi.org/10.4171/rmi/1159. · Zbl 1462.37009
[26] I. Gentil, C. Léonard, L. Ripani, and L. Tamanini, An entropic interpolation proof of the HWI inequality, Stochastic Process. Appl., 130 (2020), pp. 907-923, https://doi.org/10.1016/j.spa.2019.04.002. · Zbl 1443.60023
[27] N. Gozlan and C. Léonard, Transport inequalities. A survey, Markov Process. Related Fields, 16 (2010), pp. 635-736. · Zbl 1229.26029
[28] U. G. Haussmann and E. Pardoux, Time reversal of diffusions, Ann. Probab., 14 (1986), pp. 1188-1205, https://doi.org/10.1214/aop/1176992362. · Zbl 0607.60065
[29] O. Johnson, Information Theory and the Central Limit Theorem, Imperial College Press, London, 2004, https://doi.org/10.1142/p341. · Zbl 1061.60019
[30] R. Jordan and D. Kinderlehrer, An extended variational principle, in Partial Differential Equations and Applications, Lecture Notes in Pure and Appl. Math. 177, Marcel Dekker, New York, 1996, pp. 187-200. · Zbl 0852.49003
[31] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), pp. 1-17, https://doi.org/10.1137/S0036141096303359. · Zbl 0915.35120
[32] I. Karatzas and C. Kardaras, Portfolio Theory and Arbitrage: A Course in Mathematical Finance, Grad. Stud. Math. 214, Amer. Math. Soc., Providence, RI, 2021. · Zbl 1144.91019
[33] I. Karatzas, J. Maas, and W. Schachermayer, Trajectorial dissipation and gradient flow for the relative entropy in Markov chains, Commun. Inf. Syst., 21 (2021), pp. 481-536, https://doi.org/10.4310/CIS.2021.v21.n4.a1. · Zbl 1491.60129
[34] I. Karatzas, W. Schachermayer, and B. Tschiderer, Trajectorial Otto Calculus, preprint, https://arxiv.org/abs/1811.08686, 2020.
[35] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Grad. Texts in Math. 113, Springer-Verlag, New York, 1998, https://doi.org/10.1007/978-1-4612-0949-2. · Zbl 0734.60060
[36] A. Kolmogoroff, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann., 104 (1931), pp. 415-458, https://doi.org/10.1007/BF01457949. · JFM 57.0613.03
[37] A. Kolmogoroff, Zur Umkehrbarkeit der statistischen Naturgesetze, Math. Ann., 113 (1937), pp. 766-772, https://doi.org/10.1007/BF01571664. · Zbl 0015.26004
[38] C. Léonard, Some properties of path measures, in Séminaire de Probabilités XLVI, Lecture Notes in Math. 2123, Springer, Cham, 2014, pp. 207-230, https://doi.org/10.1007/978-3-319-11970-0_8. · Zbl 1390.60279
[39] C. Léonard, On the convexity of the entropy along entropic interpolations, in Measure Theory in Non-Smooth Spaces, Partial Differ. Equ. Meas. Theory, De Gruyter Open, Warsaw, 2017, pp. 194-242, https://doi.org/10.1515/9783110550832-006. · Zbl 1485.28018
[40] P. A. Markowich and C. Villani, On the trend to equilibrium for the Fokker-Planck equation: An interplay between physics and functional analysis, in VI Workshop on Partial Differential Equations, Part II (Rio de Janeiro, 1999), Mat. Contemp. 19, Rio de Janeiro, 2000, pp. 1-29. · Zbl 1139.82326
[41] R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), pp. 153-179, https://doi.org/10.1006/aima.1997.1634. · Zbl 0901.49012
[42] P. A. Meyer, Sur une transformation du mouvement brownien due à Jeulin et Yor, in Séminaire de Probabilités XXVIII, Lecture Notes in Math. 1583, Springer, Berlin, 1994, pp. 98-101, https://doi.org/10.1007/BFb0073836. · Zbl 0811.60064
[43] E. Nelson, Dynamical Theories of Brownian Motion, 2nd ed., Math. Notes, Princeton Univ. Press, Princeton, NJ, 2001. · Zbl 1375.60013
[44] F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), pp. 101-174, https://doi.org/10.1081/PDE-100002243. · Zbl 0984.35089
[45] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), pp. 361-400, https://doi.org/10.1006/jfan.1999.3557. · Zbl 0985.58019
[46] É. Pardoux, Grossissement d’une filtration et retournement du temps d’une diffusion, in Séminaire de Probabilités XX, Univ. Strasbourg, 1984/85, Lecture Notes in Math. 1204, Springer, Berlin, 1986, pp. 48-55, https://doi.org/10.1007/BFb0075711.
[47] M. Pavon, Stochastic control and nonequilibrium thermodynamical systems, Appl. Math. Optim., 19 (1989), pp. 187-202, https://doi.org/10.1007/BF01448198. · Zbl 0664.60046
[48] H. Risken, The Fokker-Planck Equation. Methods of Solution and Applications, 2nd ed., Springer Ser. Synergetics 18, Springer-Verlag, Berlin, 1996, https://doi.org/10.1007/978-3-642-61544-3. · Zbl 0866.60071
[49] L. C. G. Rogers, Smooth transition densities for one-dimensional diffusions, Bull. London Math. Soc., 17 (1985), pp. 157-161, https://doi.org/10.1112/blms/17.2.157. · Zbl 0604.60077
[50] E. Schrödinger, Über die Umkehrung der Naturgesetze, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1931 (1931), pp. 144-153. · JFM 57.1147.01
[51] E. Schrödinger, Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique, Ann. Inst. H. Poincaré, 2 (1932), pp. 269-310. · Zbl 0004.42505
[52] Z. Schuss, Singular perturbation methods in stochastic differential equations of mathematical physics, SIAM Rev., 22 (1980), pp. 119-155, https://doi.org/10.1137/1022024. · Zbl 0436.60045
[53] A. J. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon, Information and Control, 2 (1959), pp. 101-112, https://doi.org/10.1016/S0019-9958(59)90348-1. · Zbl 0085.34701
[54] K.-T. Sturm, On the geometry of metric measure spaces I, Acta Math., 196 (2006), pp. 65-131, https://doi.org/10.1007/s11511-006-0002-8. · Zbl 1105.53035
[55] K.-T. Sturm, On the geometry of metric measure spaces II, Acta Math., 196 (2006), pp. 133-177, https://doi.org/10.1007/s11511-006-0003-7. · Zbl 1106.53032
[56] C. Villani, Topics in Optimal Transportation, Grad. Stud. Math. 58, Amer. Math. Soc., Providence, RI, 2003, https://doi.org/10.1090/gsm/058. · Zbl 1106.90001
[57] C. Villani, Optimal Transport. Old and New, Grundlehren Math. Wiss. 338, Springer-Verlag, Berlin, 2009, https://doi.org/10.1007/978-3-540-71050-9.
[58] D. Williams, Probability with Martingales, Cambridge Math. Textbooks, Cambridge Univ. Press, Cambridge, 1991, https://doi.org/10.1017/CBO9780511813658. · Zbl 0722.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.