×

Groups, special functions and rigged Hilbert spaces. (English) Zbl 1432.22024

Summary: We show that Lie groups and their respective algebras, special functions and rigged Hilbert spaces are complementary concepts that coexist together in a common framework and that they are aspects of the same mathematical reality. Special functions serve as bases for infinite dimensional Hilbert spaces supporting linear unitary irreducible representations of a given Lie group. These representations are explicitly given by operators on the Hilbert space \(\mathcal{H}\) and the generators of the Lie algebra are represented by unbounded self-adjoint operators. The action of these operators on elements of continuous bases is often considered. These continuous bases do not make sense as vectors in the Hilbert space; instead, they are functionals on the dual space, \(\Phi^\times\), of a rigged Hilbert space, \(\Phi\subset \mathcal{H} \subset \Phi^\times\). In fact, rigged Hilbert spaces are the structures in which both, discrete orthonormal and continuous bases may coexist. We define the space of test vectors \(\Phi\) and a topology on it at our convenience, depending on the studied group. The generators of the Lie algebra can often be continuous operators on \(\Phi\) with its own topology, so that they admit continuous extensions to the dual \(\Phi^\times\) and, therefore, act on the elements of the continuous basis. We investigate this formalism for various examples of interest in quantum mechanics. In particular, we consider \(\mathrm{SO}(2)\) and functions on the unit circle, \(\mathrm{SU}(2)\) and associated Laguerre functions, Weyl-Heisenberg group and Hermite functions, \(\mathrm{SO}(3, 2)\) and spherical harmonics, \(\mathrm{su}(1, 1)\) and Laguerre functions, \(\mathrm{su}(2, 2)\) and algebraic Jacobi functions and, finally, \(\mathrm{su}(1, 1) \oplus \mathrm{su}(1, 1)\) and Zernike functions on a circle.

MSC:

22E70 Applications of Lie groups to the sciences; explicit representations
20C30 Representations of finite symmetric groups
47A70 (Generalized) eigenfunction expansions of linear operators; rigged Hilbert spaces
17B81 Applications of Lie (super)algebras to physics, etc.

Software:

DLMF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fourier, J.B.J.; ; Théorie Analytique de la Chaleur: Paris, France 1822; . · JFM 15.0954.01
[2] Folland, G.B.; ; Fourier Analysis and Its Applications: Belmont, CA, USA 1992; . · Zbl 0786.42001
[3] Folland, G.B.; ; A Course in Abstract Harmonic Analysis: Boca Raton, FL, USA 1995; . · Zbl 0857.43001
[4] Trapani, C.; Triolo, S.; Tschinke, F.; Distribution frames and bases; J. Fourier Anal. Appl.: 2019; Volume 25 ,2109-2140. · Zbl 07077736
[5] Ozaktas, H.M.; Zalevsky, Z.; Alper Kutay, M.; ; The Fractional Fourier Transform: Chichester, UK 2001; .
[6] Celeghini, E.; Gadella, M.; del Olmo, M.A.; Hermite Functions, Lie Groups and Fourier Analysis; Entropy: 2018; Volume 20 . · Zbl 1390.81204
[7] Celeghini, E.; Gadella, M.; del Olmo, M.A.; Hermite Functions and Fourier Series; 2019; . · Zbl 1432.22024
[8] Kennedy, R.A.; Sadeghi, P.; ; Hilbert Space Methods in Signal Processing: Cambridge, UK 2013; . · Zbl 1287.94001
[9] Ramamoorthi, R.; Hanrahan, P.; An efficient representation for irradiance environment maps; Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’01): New York, NY, USA 2001; ,117-128.
[10] Mahajan, D.; Ramamoorthi, R.; Curless, B.; A theory of frequency domain invariants: spherical harmonic identities for BRDF/lighting transfer and image consistency; IEEE Trans. Pattern Anal. Mach. Intell.: 2008; Volume 30 ,197-213.
[11] Zernike, F.; Inflection theory of the cutting method and its improved form, the phase contrast method; Physica: 1934; Volume 1 ,689-704. · Zbl 0009.28101
[12] Mahajan, V.N.; Aftab, M.; Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts, case where the circle coefficients; Appl. Opt.: 2010; Volume 49 ,6489-6501.
[13] Lakshminarayanana, V.; Fleck, A.; Zernike polynomials: A guide; J. Mod. Opt.: 2011; Volume 58 ,545-561.
[14] Gelfand, I.M.; Vilenkin, N.Y.; ; Generalized Functions: Applications to the Harmonic Analysis: New York, NY, USA 1964; .
[15] Reed, M.; Simon, B.; ; Functional Analysis: New York, NY, USA 1972; . · Zbl 0242.46001
[16] Bohm, A.; ; The Rigged Hilbert Space and Quantum Mechanics: Berlin, Germany 1978; . · Zbl 0388.46045
[17] Roberts, J.E.; Rigged Hilbert spaces in quantum mechanics; Commun. Math. Phys.: 1966; Volume 2 ,98-119. · Zbl 0144.23404
[18] Antoine, J.P.; Dirac formalism and symmetry problems in quantum mechanics. I. General Dirac formalism; J. Math. Phys.: 1969; Volume 10 ,53-69. · Zbl 0172.56602
[19] Melsheimer, O.; Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. I. General theory; J. Math. Phys.: 1973; Volume 15 ,902-916.
[20] Gadella, M.; Gómez, F.; A unified mathematical formalism for the Dirac formulation of quantum mechanics; Found. Phys.: 2002; Volume 32 ,815-869.
[21] Gadella, M.; Gómez, F.; On the mathematical basis of the Dirac formulation of Quantum Mechanics; Int. J. Theor. Phys.: 2003; Volume 42 ,2225-2254. · Zbl 1038.81020
[22] Gadella, M.; Gómez-Cubillo, F.; Eigenfunction Expansions and Transformation Theory; Acta Appl. Math.: 2010; Volume 109 ,721-742. · Zbl 1210.47046
[23] Bohm, A.; Decaying states in the rigged Hilbert space formulation of quantum mechanics; J. Math. Phys.: 1979; Volume 21 ,2813-2823.
[24] Bohm, A.; Resonance poles and Gamow vectors in the rigged Hilbert space formulation of quantum mechanics; J. Math. Phys.: 1980; Volume 22 ,2813-2823.
[25] Bohm, A.; Gadella, M.; ; Dirac Kets, Gamow Vectors and Gelfand Triplets: Berlin, Germany 1989; .
[26] Civitarese, O.; Gadella, M.; Physical and Mathematical Aspects of Gamow States; Phys. Rep.: 2004; Volume 396 ,41-113.
[27] Gadella, M.; A rigged Hilbert space of Hardy class functions: Applications to resonances; J. Math. Phys.: 1983; Volume 24 ,1462-1469. · Zbl 0526.47007
[28] Bohm, A.; Time-asymmetric quantum physics; Phys. Rev. A: 1999; Volume 50 ,861-876.
[29] Bohm, A.; Harshman, N.L.; Kaldass, H.; Wickramasekara, S.; Time asymmetric quantum theory and the ambiguity of the Z-boson mass and width; Eur. Phys. J. C: 2000; Volume 18 ,333-342.
[30] Bohm, A.; Loewe, M.; Van de Ven, B.; Time asymmetric quantum theory—I. Modifying an axiom of quantum physics; Fort. Phys.: 2003; Volume 51 ,551-568. · Zbl 1028.81005
[31] Bohm, A.; Kaldass, H.; Wickramasekara, S.; Time asymmetric quantum theory—II. Relativistic resonances from S-matrix poles; Fort. Phys.: 2003; Volume 51 ,569-603. · Zbl 1028.81006
[32] Bohm, A.; Kaldass, H.; Wickramasekara, S.; Time asymmetric quantum theory—III. Decaying states and the causal Poincaré semigroup; Fort. Phys.: 2003; Volume 51 ,604-634. · Zbl 1028.81007
[33] Bohm, A.; Gadella, M.; Kielanowski, P.; Time asymmetric quantum mechanics; SIGMA: 2011; Volume 8 ,086. · Zbl 1250.81011
[34] Antoniou, I.E.; Tasaki, S.; Generalized spectral decompositions of mixing dynamical systems; Int. J. Quantum Chem.: 1993; Volume 46 ,425-474.
[35] Antoniou, I.E.; Tasaki, S.; Generalized spectral decomposition of the β-adic baker’s transformation and intrinsic irreversibility; Phys. A Stat. Mech. Appl.: 1992; Volume 190 ,303-329. · Zbl 0776.58032
[36] Antoniou, I.E.; Gadella, M.; Suchanecki, Z.; General properties of the Liouville operator; Int. J. Theor. Phys.: 1998; Volume 37 ,1641-1654. · Zbl 0940.47064
[37] Antoniou, I.E.; Gadella, M.; Suchanecki, Z.; Some general properties of Liouville Spaces; Irreversibility and Causality: Berlin, Germany 1998; ,38-56.
[38] Antoniou, I.E.; Gadella, M.; Irreversibility, resonances and rigged Hilbert spaces; Irreversible Quantum Dynamics: Berlin, Germany 2003; ,245-302. · Zbl 1052.81029
[39] Bogolubov, N.N.; Logunov, A.A.; Todorov, I.T.; ; Introduction to Axiomatic Quantum Field Theory: Reading, MA, USA 1975; .
[40] Antoniou, I.E.; Gadella, M.; Prigogine, I.; Pronko, G.P.; Relativistic Gamow vectors; J. Math. Phys.: 1998; Volume 39 ,2995-3018. · Zbl 1006.47055
[41] Gadella, M.; A RHS for the free radiation field; J. Math. Phys.: 1985; Volume 26 ,725-727. · Zbl 0587.47027
[42] Hida, T.; ; Stationary Stochastic Processes: Princeton, NJ, USA 1970; . · Zbl 0214.16401
[43] Hida, T.; ; Brownian Motion: Berlin, Germany 1980; .
[44] Hormander, L.; ; The Analysis of Partial Differential Equations I: Distribution Theory and Fourier Analysis: Berlin, Germany 1990; . · Zbl 0712.35001
[45] Feichtinger, H.G.; Zimmermann, G.; A Banach space of test functions for Gabor analysis; Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis: Boston, MA, USA 1998; ,123-170. · Zbl 0890.42008
[46] Cordero, E.; Feichtinger, H.G.; Luef, F.; Banach Gelfand triples for Gabor analysis; Pseudo-Differential Operators: Berlin, Germany 2008; ,1-33. · Zbl 1161.35060
[47] Feichtinger, H.G.; Banach Gelfand triples for applications in physics and engineering; Proceedings of the AIP Conference Proceedings: ; Volume Volume 1146 ,189-228.
[48] Bannert, S.; Banach-Gelfand Triples and Applications in Time-Frequency Analysis; Master’s Thesis: Vienna, Austria 2010; .
[49] Feichtinger, H.G.; Jakobsen, M.S.; The inner kernel theorem for a certain Segal algebra; arXiv: 2018; . · Zbl 07557943
[50] Feichtinger, H.G.; Banach Gelfand Triples and some Applications in Harmonic Analysis; Proceedings of the Conference Harmonic Analysis: ; .
[51] Feichtinger, H.G.; Jakobsen, M.S.; Distribution theory by Riemann integrals; arXiv: 2019; . · Zbl 07357280
[52] Feichtinger, H.G.; Franz Luef, L.; Jakobsen, S.M.; Banach Gelfand Triples for analysis; Notices Am. Math. Soc.: 2019; .
[53] Heredia-Juesas, J.; Gago-Ribas, E.; A new view of spectral analysis of linear systems; Progress in Electromagnetics Research Symposium, Proceedings of the PIERS 2012, Kuala Lumpur, Malaysia, 27-30 March 2012: Cambridge, MA, USA 2012; .
[54] Heredia-Juesas, J.; Gago-Ribas, E.; Ganoza-Quintana, J.L.; A new version of a generalized signals & systems scheme to parameterize and analyze physical problems; Proceedings of the 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA): New York, NY, USA 2014; .
[55] Heredia-Juesas, J.; Gago-Ribas, E.; Vidal-García, P.; Application of the rigged Hilbert spaces into the generalized signals & systems theory; Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA): New York, NY, USA 2015; .
[56] Heredia-Juesas, J.; Gago-Ribas, E.; Vidal-García, P.; Application of the Rigged Hilbert Spaces into the Generalized Signals and Systems Theory: Practical Example; Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS): New York, NY, USA 2016; .
[57] Parravicini, G.; Gorini, V.; Sudarshan, E.C.G.; Resonances, scattering theory, and rigged Hilbert spaces; J. Math. Phys.: 1980; Volume 21 ,2208-2226. · Zbl 0462.47011
[58] Costin, O.; Soffer, A.; Resonance theorey for Schrödinger operators; Commun. Math. Phys.: 2001; Volume 224 ,133-152. · Zbl 0992.81025
[59] De la Madrid, R.; Rigged Hilbert space approach to the Schrödinger equation; J. Phys. A Math. Gen.: 2002; Volume 35 ,319-342. · Zbl 1041.81033
[60] Baumgártel, H.; Generalized Eigenvectors for Resonances in the Friedrichs Model and Their Associated Gamov Vectors; Rev. Math. Phys.: 2006; Volume 18 ,61-78. · Zbl 1144.81031
[61] Bellomonte, G.; Trapani, C.; Rigged Hilbert spaces and contractive families of Hilbert spaces; Monatshefte Math.: 2011; Volume 164 ,271-285. · Zbl 1229.47029
[62] Bellomonte, G.; di Bella, S.; Trapani, C.; Operators in rigged Hilbert spaces: some spectral properties; J. Math. Anal. Appl.: 2014; Volume 411 ,931-946. · Zbl 1331.47027
[63] Chiba, H.; A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions; Adv. Math.: 2015; Volume 273 ,324-379. · Zbl 1317.47022
[64] Chiba, H.; A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions II: Applications to Schrödinger operators; Kyushu J. Math.: 2018; Volume 72 ,375-405. · Zbl 1478.47010
[65] Maurin, K.; ; General Eiegenfunction Expansions and Unitary Representations of Topological Groups: Warsaw, Poland 1968; . · Zbl 0185.39001
[66] Celeghini, E.; Gadella, M.; del Olmo, M.A.; Lie algebra representations and rigged Hilbert spaces: The SO(2) case; Acta Polytech.: 2017; Volume 56 ,379-384.
[67] Celeghini, E.; del Olmo, M.A.; Group theoretical aspects of L2(R+) and the associated Laguerre polynomials; Physical and Mathematical Aspects of Symmetries: New York, NY, USA 2017; ,133-138. · Zbl 1390.81234
[68] Celeghini, E.; Gadella, M.; del Olmo, M.A.; SU(2), Associated Laguerre Polynomials and Rigged Hilbert Spaces; Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics: Berlin, Germany 2018; Volume Volume 2 ,373-383. · Zbl 1406.22022
[69] Szegö, G.; ; Orthogonal Polynomials: Providence, RI, USA 2003; .
[70] Abramovich, M.; Stegun, I.A.; ; Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables: New York, NY, USA 1972; .
[71] ; NIST Handbook of Mathematical Functions: Cambridge, MA, USA 2010; . · Zbl 1198.00002
[72] Durán, J.A.; A bound on the Laguerre polynomials; Studia Math.: 1991; Volume 100 ,169-181. · Zbl 0734.33003
[73] Antoine, J.P.; Grossmann, A.; Partial inner product spaces 1. General properties; J. Funct. Anal.: 1976; Volume 23 ,369-378. · Zbl 0359.46020
[74] Antoine, J.P.; Grossmann, A.; Partial inner product spaces 2. Operators; J. Funct. Anal.: 1976; Volume 23 ,379-391. · Zbl 0359.46021
[75] Antoine, J.P.; Trapani, C.; ; Partial Inner Product Spaces: Theory and Applications: Berlin, Germany 2009; Volume Volume 1986 . · Zbl 1195.46001
[76] Antoine, J.P.; Trapani, C.; PIP-Space Valued Reproducing Pairs of Measurable Functions; Axioms: 2019; Volume 8 . · Zbl 1432.42022
[77] Cohen-Tanudji, C.; Diu, B.; Laloe, F.; ; Quantum Mechanics: NewYork, NY, USA 1991; .
[78] Celeghini, E.; Gadella, M.; del Olmo, M.A.; Applications of Rigged Hilbert Spaces in Quantum Mechanics and Signal Procesing; J. Math. Phys.: 2016; Volume 57 ,072105. · Zbl 1351.47008
[79] Celeghini, E.; del Olmo, M.A.; Coherent orthogonal polynomials; Ann. Phys.: 2013; Volume 335 ,78-85. · Zbl 1286.81110
[80] Celeghini, E.; del Olmo, M.A.; Algebraic special functions and SO(3, 2); Ann. Phys.: 2013; Volume 333 ,90-103. · Zbl 1284.33006
[81] Celeghini, E.; Gadella, M.; del Olmo, M.A.; Spherical Harmonics and Rigged Hilbert Spaces; J. Math. Phys.: 2015; Volume 59 ,053502. · Zbl 1390.81204
[82] Atkinson, K.; Hang, W.; ; Spherical Harmonics Approximations on the Unit Sphere: Berlin, Germany 2012; .
[83] Celeghini, E.; del Olmo, M.A.; Velasco, M.A.; Lie groups, algebraic special functions and Jacobi polynomials; J. Phys. Conf. Ser.: 2015; Volume 597 ,012023.
[84] Celeghini, E.; del Olmo, M.A.; Velasco, M.A.; Jacobi polynomials as infinite-dimensional irreducible representation of su(2; 2); Integrability, Supersymmetry and Coherent States: Berlin, Germany 2019; . · Zbl 1439.17012
[85] Celeghini, E.; Gadella, M.; del Olmo, M.A.; Groups, Jacobi Functions and Rigged Hilbert Spaces; arXiv: 2019; . · Zbl 07102728
[86] Born, M.; Wolf, E.; ; Principles of Optics: Cambridge, UK 1999; . · Zbl 1430.78001
[87] Celeghini, E.; Gadella, M.; del Olmo, M.A.; Zernike functions, rigged Hilbert spaces and potential applications; arXiv: 2019; . · Zbl 07102728
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.