×

zbMATH — the first resource for mathematics

Dealing with external actions in belief causal networks. (English) Zbl 1316.68158
Summary: Graphical models are efficient and simple ways to represent dependencies between variables. We introduce in this paper the so-called belief causal networks where dependencies are uncertain causal links and where the uncertainty is represented by belief masses. Through these networks, we propose to represent the results of passively observing the spontaneous behavior of the system and also evaluate the effects of external actions. Interventions are very useful for representing causal relations, we propose to compute their effects using a generalization of the “do” operator. Even if the belief chain rule is different from the Bayesian chain rule, we show that the joint distributions of the altered structures to graphically describe interventions are equivalent. This paper also addresses new issues that are arisen when handling interventions: we argue that in real world applications, external manipulations may be imprecise and show that they have a natural encoding under the belief function framework.

MSC:
68T30 Knowledge representation
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDF BibTeX Cite
Full Text: DOI
References:
[1] A. Appriou, Multisensor signal processing in the framework of the theory of evidence, in: NATO/RTA, SCI Lecture Series 216 on Application of Mathematical Signal Processing Techniques to Mission Systems. · Zbl 1103.68114
[2] Ben Abdallah, N.; Mouhous Voyneau, N.; Denoeux, T., Combining statistical and expert evidence within the d-s framework: application to hydrological return level estimation, (International Conference on Belief Functions (BELIEF’12), Advances in Soft Computing, vol. 164, (2012), Springer-Verlag), 393-400
[3] Ben Amor, N.; Benferhat, S.; Mellouli, K., Anytime propagation algorithm for MIN-based possibilistic graphs, Soft Comput., 8, 150-161, (2003)
[4] Ben Yaghlane, B.; Mellouli, K., Directed evidential networks with conditional belief functions, (Nielsen, T. D.; Zhang, N. L., European conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’03), Lecture Notes in Computer Science, vol. 2711, (2003), Springer), 291-305 · Zbl 1274.68515
[5] Ben Yaghlane, B.; Mellouli, K., Inference in directed evidential networks based on the transferable belief model, Int. J. Approx. Reasoning, 48, 399-418, (2008) · Zbl 1185.68700
[6] Ben Yaghlane, B.; Smets, P.; Mellouli, K., Belief function independence: I. the marginal case, Int. J. Approx. Reasoning, 29, 47-70, (2001) · Zbl 1015.68207
[7] Ben Yaghlane, B.; Smets, P.; Mellouli, K., Belief function independence: II. the conditional case, Int. J. Approx. Reasoning, 31, 31-75, (2002) · Zbl 1052.68126
[8] Benavoli, A.; Ristic, B.; Farina, A.; Oxenham, M.; Chisci, L., An application of evidential networks to threat assessment, IEEE Transactions on Aerospace and Electronic Systems, 45, 620-639, (2009)
[9] Benferhat, S.; Smaoui, S., Hybrid possibilistic networks, Int. J. Approx. Reasoning, 44, 224-243, (2007) · Zbl 1116.68094
[10] Benferhat, S.; Smaoui, S., Possibilistic causal networks for handling interventions: A new propagation algorithm, (AAAI-Conference on Artificial Intelligence (AAAI’07), (2007), AAAI Press), 373-378
[11] Benferhat, S.; Smaoui, S., Inferring interventions in product-based possibilistic causal networks, Fuzzy Sets Syst., 169, 26-50, (2011) · Zbl 1214.68395
[12] Bloch, I., Information combination operator for data fusion: a comparative review with classification, IEEE Trans. SMC, 26, 52-67, (1996)
[13] Boukhris, I.; Benferhat, S.; Elouedi, Z., Representing belief function knowledge with graphical models, (Xiong, H.; Lee, W. B., International Conference on Knowledge Science* Engineering and Management (KSEM’11), Lecture Notes in Computer Science, vol. 7091, (2011), Springer), 233-245
[14] Boukhris, I.; Elouedi, Z.; Benferhat, S., Analyzing belief function networks with conditional beliefs, (International Conference on Intelligent Systems Design and Applications (ISDA’11), (2011), IEEE Computer Society), 959-964
[15] Boukhris, I.; Elouedi, Z.; Benferhat, S., Modeling interventions using belief causal networks, (International Florida Artificial Intelligence Research Society Conference (FLAIRS’11), (2011), AAAI Press), 602-607
[16] Boukhris, I.; Elouedi, Z.; Benferhat, S., Handling interventions with uncertain consequences in belief causal networks, (Greco, S.; Bouchon-Meunier, B.; Coletti, G.; Fedrizzi, M.; Matarazzo, B.; Yager, R. R., International Conference on Information Processing and Management of Uncertainty (IPMU’12), Communications in Computer and Information Science, vol. 299, (2012), Springer Berlin Heidelberg), 585-595 · Zbl 1252.68298
[17] Darwiche, A., Modeling and reasoning with Bayesian networks, (2009), Cambridge University Press · Zbl 1231.68003
[18] Denœux, T.; Zouhal, L. M., Handling possibilistic labels in pattern classification using evidential reasoning, Fuzzy Sets Syst., 122, 47-62, (2001)
[19] Dubois, D.; Denoeux, T.; revision, Conditioning in Dempster-Shafer theory: Prediction vs, (Denoeux, T.; Masson, M. H., International Conference on Belief Functions (BELIEF’12), Advances in Soft Computing, vol. 164, (2012), Springer), 385-392
[20] Dubois, D.; Grabisch, M.; Prade, H.; Smets, P., Using the transferable belief model and a qualitative possibility theory approach on an illustrative example: the assessment of the value of a candidate, Int. J. Intell. Syst., 16, 1245-1272, (2001) · Zbl 1005.68148
[21] Dubois, D.; Prade, H., On the unicity of Dempster rule of combination, Int. J. Intell. Syst., 1, 133-142, (1986) · Zbl 0641.68159
[22] Eberhardt, F.; Scheines, R., Interventions and causal inference, Philos. Sci., 74, 981-995, (2007)
[23] Elouedi, Z.; Mellouli, K.; Smets, P., Belief decision trees: theoretical foundations, Int. J. Approx. Reason., 28, 91-124, (2001) · Zbl 0991.68088
[24] Gänderfors, P., Belief revision, (1992), Cambridge University Press
[25] Glymour, C., The mind’s arrows: Bayes nets and graphical causal models in psychology, (2001), MIT Press Cambridge
[26] Goldszmidt, M.; Pearl, J., Rank-based systems: A simple approach to belief revision, belief update, and reasoning about evidence and actions, (Bernhard Nebel, W. R.S.; Rich, Charles, International Conference on Principles of Knowledge Representation and Reasoning (KR’92), (1992), Morgan Kaufman), 661-672
[27] Halpern, J.; Pearl, J., Causes and explanations: A structurel model approach. part I: causes, Brit. J. Philos. Sci., 56, 843-887, (2005) · Zbl 1092.03003
[28] Jensen, F.; Nielsen, T., Bayesian networks and decision graphs, (2007), Springer Publishing Company · Zbl 1277.62007
[29] Katsuno, H.; Mendelzon, A. O., On the difference between updating a knowledge base and revising it, (Allen, J.; Fikes, R.; Sandewall, E., International Conference on Principles of Knowledge Representation and Reasoning (KR’91), (1991), Morgan-Kaufman), 87-394 · Zbl 0765.68197
[30] Kennes, R., Computational aspects of the Möbius transform of a graph, IEEE-SMC, 22, 201-223, (1992) · Zbl 0791.68156
[31] Kim, H.; Swain, P. H., Evidential reasoning approach to multisource-data classification in remote sensing, IEEE Trans. Syst. Man Cybernet., 25, 1257-1265, (1995)
[32] Korb, K. B.; Hope, L. R.; Nicholson, A. E.; Axnick, K., Varieties of causal intervention, (Zhang, C.; Guesgen, H. W.; Yeap, W. K., Pacific Rim International Conference on Artificial Intelligence (PRICAI’04), Lecture Notes in Computer Science, vol. 3157, (2004), Springer), 322-331
[33] E. Lefevre, P. Vannoorenberghe, O. Colot, Evience theory and color image segmentation, in: International Conference on Color in Graphics and Image Processing (ICGIP’00), pp. 164-169.
[34] Pearl, J., Probabilistic reasoning in intelligent systems: networks of plausible inference, (1988), Morgan Kaufman Pub. San Mateo, Ca, USA
[35] Pearl, J., Causality: Models, Reasonning and Inference, (2000), Cambridge University Press
[36] Shafer, G., A mathematical theory of evidence, (1976), Princeton Univ. Press Princeton, NJ · Zbl 0359.62002
[37] Shafer, G., Belief functions and parametric models, J. Roy. Stat. Soc. B, 44, 322-352, (1982) · Zbl 0499.62007
[38] Shenoy, P. P., A valuation-based language for expert systems, Int. J. Approx. Reason., 3, 383-411, (1989)
[39] Shenoy, P. P., Valuation networks and conditional independence, (Heckerman, D.; Mamdani, E. H., Proceedings of Uncertainty in Artificial Intelligence (UAI’93), (1993), Morgan Kaufmann), 191-199
[40] Shenoy, P. P., Conditional independence in valuation-based systems, Int. J. Approx. Reason., 10, 203-234, (1994) · Zbl 0821.68114
[41] Shenoy, P. P.; Shafer, G., Axioms for probability and belief functions propagation, (Shachter, R. D.; Levitt, T. S.; Kanal, L. N.; Lemmer, J. F., Uncertainty in Artificial Intelligence (UAI’90), (1999), North Holland Amsterdam), 159-198
[42] Simon, C.; Weber, P.; Evsukoff, A., Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis, Reliab. Eng. Syst. Saf., 93, 950-963, (2008)
[43] Smets, P., The combination of evidence in the transferable belief model, IEEE Trans. Pattern Anal. Mach. Intell., 12, 447-458, (1990)
[44] Smets, P., About updating, (D’Ambrosio, B.; Smets, P., Uncertainty in Artificial Intelligence (UAI’91), (1991), Morgan Kaufmann), pp. 378-385
[45] Smets, P., The nature of the unnormalized beliefs encountered in the transferable belief model, (Dubois, D.; Wellman, M. P., Uncertainty in Artificial Intelligence (UAI’92), (1992), Morgan Kaufmann), 292-297
[46] Smets, P., Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem, Int. J. Approx. Reasoning, 9, 1-35, (1993) · Zbl 0796.68177
[47] Smets, P., Jeffrey’s rule of conditioning generalized to belief functions, (Heckerman, D.; Mamdani, E. H., Uncertainty in Artificial Intelligence (UAI’93), (1993), Morgan Kaufmann), 500-505
[48] P. Smets, The canonical decomposition of a weighted belief, in: International Joint Conference on Artificial Intelligence (IJCAI’95), Morgan Kaufmann, San Mateo, California, USA, 1995, pp. 1896-1901.
[49] Smets, P., The transferable belief model for quantified belief representation, (Gabbay, D. M.; Smets, P., Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1, (1998), Kluwer Doordrecht, The Netherlands), 267-301 · Zbl 0939.68112
[50] W. Spohn, Ordinal conditional functions: a dynamic theory of epistemic states, in: W. Harper, B. Skyrms (Eds.), Causation in Decision, Belief Changes and Statistics, 1988, pp. 105-134.
[51] Steyvers, M.; Tenenbaum, J. B.; Wagenmakers, E. J.; Blum, B., Inferring causal networks from observations and interventions, Cognit. Sci., 27, 453-489, (2003)
[52] Suppes, P., A probabilistic theory of causality, (1970), North-Holland Publishing Company
[53] C.M. Teng, Applications of causal inference, in: International Symposium on Artificial Intelligence and Mathematics (ISAIM’2012).
[54] Trabelsi, S.; Elouedi, Z.; Lingras, P., Classification systems based on rough sets under the belief function framework, Int. J. Approx. Reason., 52, 1409-1432, (2011) · Zbl 1242.68340
[55] Tupin, F.; Bloch, I.; Maıˆtre, H., A first step toward automatic interpretation of sar images using evidential fusion of several structure detectors, IEEE Trans. Geosci. Remote Sens., 37, 1327-1343, (1999)
[56] Xu, H.; Smets, P., Reasoning in evidential networks with conditional belief functions, Int. J. Approx. Reason., 14, 155-185, (1996) · Zbl 0941.68764
[57] L. Zadeh, Causality is undefinable, Technical Report, Univ. of California, Berkley, 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.