×

zbMATH — the first resource for mathematics

Evaluating product-based possibilistic networks learning algorithms. (English) Zbl 06507026
Destercke, Sébastien (ed.) et al., Symbolic and quantitative approaches to reasoning with uncertainty. 13th European conference, ECSQARU 2015, Compiègne, France, July 15–17, 2015. Proceedings. Cham: Springer (ISBN 978-3-319-20806-0/pbk; 978-3-319-20807-7/ebook). Lecture Notes in Computer Science 9161. Lecture Notes in Artificial Intelligence, 312-321 (2015).
Summary: This paper proposes a new evaluation strategy for product-based possibilistic networks learning algorithms. The proposed strategy is mainly based on sampling a possibilistic networks in order to construct an imprecise data set representative of their underlying joint distribution. Experimental results showing the efficiency of the proposed method in comparing existing possibilistic networks learning algorithms is also presented.
For the entire collection see [Zbl 1316.68008].
Reviewer: Reviewer (Berlin)
MSC:
68T37 Reasoning under uncertainty in the context of artificial intelligence
Software:
WEBWEAVR-III
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dubois, D.: Possibility theory and statistical reasoning. Comput. Stat. Data Anal. 51(1), 47–69 (2006) · Zbl 1157.62309 · doi:10.1016/j.csda.2006.04.015
[2] Benferhat, S., Smaoui, S.: Hybrid possibilistic networks. Int. J. Approximate Reasoning 44(3), 224–243 (2007) · Zbl 1116.68094 · doi:10.1016/j.ijar.2006.07.012
[3] Ayachi, R., Ben Amor, N., Benferhat, S.: A generic framework for a compilation-based inference in probabilistic and possibilistic networks. Inf. Sci. 257, 342–356 (2014) · Zbl 1320.68177 · doi:10.1016/j.ins.2013.04.019
[4] Borgelt, C., Steinbrecher, M., Kruse, R.: Graphical models: Representations for Learning, vol. 704. Reasoning and Data Mining. Wiley, Chichester (2009) · Zbl 1269.62014 · doi:10.1002/9780470749555
[5] Gebhardt, J., Kruse, R.: Learning possibilistic networks from data. In: International Workshop on Artificial Intelligence and Statistics, pp. 233–244 (1996) · doi:10.1007/978-1-4612-2404-4_14
[6] Sangüesa, R., Cabós, J., Cortes, U.: Possibilistic conditional independence: a similarity-based measure and its application to causal network learning. Int. J. Approximate Reasoning 18(1), 145–167 (1998) · Zbl 0941.68120 · doi:10.1016/S0888-613X(98)00012-7
[7] Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In: Smets, P. (ed.) Quantified Representation of Uncertainty and Imprecision, vol. 1, pp. 169–226. Springer, Netherlands (1998) · Zbl 0924.68182 · doi:10.1007/978-94-017-1735-9_6
[8] Joslyn, C.: Towards an empirical semantics of possibility through maximum uncertainty. In: International Fuzzy Systems Association: Artificial Intelligence, pp. 86–89 (1991)
[9] Fonck, P.: Propagating uncertainty in a directed acyclic graph. In: Information Processing and Management of Uncertainty Conference, vol. 92, pp. 17–20 (1992)
[10] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988) · Zbl 0746.68089
[11] Herskovits, E., Cooper, G.F.: An entropy-driven system for construction of probabilistic expert systems from databases. In: UAI 1990, pp. 117–128. Elsevier (1991)
[12] Klir, G.J.: Uncertainty and Information: Foundations of Generalized Information Theory. Wiley, Hoboken (2005) · Zbl 1280.94004 · doi:10.1002/0471755575
[13] Dubois, D., Prade, H., Sandri, S.: On possibility/probability transformations. In: Lowen, R., Roubens, M. (eds.) Fuzzy logic, vol. 12, pp. 103–112. Springer, Netherlands (1993) · doi:10.1007/978-94-011-2014-2_10
[14] Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Uncertainty in Artificial Intelligence, pp. 149–164 (1986)
[15] Xiang, Y., Miller, T.: A well-behaved algorithm for simulating dependence structures of Bayesian networks. IJAM 1, 923–932 (1999) · Zbl 1171.68765
[16] Chanas, S., Nowakowski, M.: Single value simulation of fuzzy variable. Fuzzy Sets Syst. 25(1), 43–57 (1988) · Zbl 0633.65144 · doi:10.1016/0165-0114(88)90098-X
[17] Guyonnet, D., Bourgine, B., Dubois, D., Fargier, H., Côme, B., Chilès, J.P.: Hybrid approach for addressing uncertainty in risk assessments. J. Environ. Eng. 129(1), 68–78 (2003) · doi:10.1061/(ASCE)0733-9372(2003)129:1(68)
[18] Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. learn. 65(1), 31–78 (2006) · Zbl 05075644 · doi:10.1007/s10994-006-6889-7
[19] Shapiro, L.G., Haralick, R.M.: A metric for comparing relational descriptions. Pattern Anal. Mach. Intell. 7(1), 90–94 (1985) · doi:10.1109/TPAMI.1985.4767621
[20] Jenhani, I., Ben Amor, N., Elouedi, Z.: Decision trees as possibilistic classifiers. Int. J. Approximate Reasoning 48(3), 784–807 (2008) · Zbl 05683192 · doi:10.1016/j.ijar.2007.12.002
[21] Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Stat. Soc. 50, 157–224 (1988) · Zbl 0684.68106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.