×

Solving 2D reaction-diffusion equations with nonlocal boundary conditions by the RBF-MLPG method. (English) Zbl 1332.35175

Summary: This paper is concerned with the development of a new approach for the numerical solution of linear and nonlinear reaction-diffusion equations in two spatial dimensions with Bitsadze-Samarskii type nonlocal boundary conditions. Proper finite-difference approximations are utilized to discretize the time variable. Then, the weak equations of resultant elliptic type PDEs are constructed on local subdomains. These local weak equations are discretized by using the multiquadric (MQ) radial basis function (RBF) approximation where an iterative procedure is proposed to treat the nonlinear terms in each time step. Numerical test problems are given to verify the accuracy of the obtained numerical approximations and stability of the proposed method versus the parameters of the nonlocal boundary conditions.

MSC:

35K57 Reaction-diffusion equations
35D30 Weak solutions to PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Shirzadi, V. Sladek, J. Sladek, “A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation,” Eng. Anal. Bound. Elem., 37, 8-14 (2013). · Zbl 1352.65372 · doi:10.1016/j.enganabound.2012.08.007
[2] S. Abbasbandy, V. Sladek, A. Shirzadi, J. Sladek, “Numerical simulations for coupled pair of diffusion equations by mlpg method,” CMES Comput. Model. Eng. Sci., 71, No. 1, 15-37 (2011). · Zbl 1231.65167
[3] A. Shirzadi, “Meshless local integral equations formulation for the 2d convection- diffusion equations with a nonlocal boundary condition,” CMES Comput. Model. Eng. Sci., 85, No. 1, 45-63 (2012). · Zbl 1357.65132
[4] I. Dag, Y. Dereli, “Numerical solution of rlw equation using radial basis functions,” Int. J. Comput. Math., 87, No. 1, 63-76 (2010). · Zbl 1182.65156 · doi:10.1080/00207160801965255
[5] S. G. Ahmed, M. L. Mekey, “A collocation and cartesian grid methods using new radial basis function to solve class of partial differential equations,” Int. J. Comput. Math., 87, No. 6, 1349-1362 (2010). · Zbl 1191.65159 · doi:10.1080/00207160802322316
[6] Y. Dereli, “Radial basis functions method for numerical solution of the modified equal width equation,” Int. J. Comput. Math., 87, No. 7, 1569-1577 (2010). · Zbl 1197.65122 · doi:10.1080/00207160802395908
[7] Q. Shen, “Numerical solution of the Sturm-Liouville problem with local rbf-based differential quadrature collocation method,” Int. J. Comput. Math., 88, No. 2, 285-295 (2011). · Zbl 1211.65103
[8] A. Shirzadi, L. Ling, S. Abbasbandy, “Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations,” Eng. Anal. Bound. Elem., 36, No. 11, 1522-1527 (2012). · Zbl 1352.65263 · doi:10.1016/j.enganabound.2012.05.005
[9] J. Rad, S. Kazem, K. Parand, “A numerical solution of the nonlinear controlled duffing oscillator by radial basis functions,” Comput. Math. Appl., 64, No. 6, 2049-2065 (2012). · Zbl 1268.65103 · doi:10.1016/j.camwa.2012.03.104
[10] S. Atluri, T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech., 22, No. 2, 117-127 (1998). · Zbl 0932.76067 · doi:10.1007/s004660050346
[11] S. Atluri, T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation,” Comput. Model. Simul. Eng., 3, 187-196 (2009).
[12] M. Dehghan, D. Mirzaei, “Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity,” Appl. Numer. Math., 59, No. 5, 1043-1058 (2009). · Zbl 1159.76034 · doi:10.1016/j.apnum.2008.05.001
[13] D. Mirzaei, M. Dehghan, “A meshless based method for solution of integral equations,” Appl. Numer. Math., 60, No. 3, 245-262 (2010). · Zbl 1202.65174 · doi:10.1016/j.apnum.2009.12.003
[14] J. Sladek, V. Sladek, Y. Hon, “Inverse heat conduction problems by meshless local Petrov-Galerkin method,” Eng. Anal. Bound. Elem., 30, No. 8, 650-661 (2006). · Zbl 1195.80020 · doi:10.1016/j.enganabound.2006.03.003
[15] M. Dehghan, D. Mirzaei, “The boundary integral equation approach for numerical solution of the one-dimensional sine-gordon equation,” Numer. Methods Partial Differ. Equa., 24, No. 6, 1405-1415 (2008). · Zbl 1153.65099 · doi:10.1002/num.20325
[16] A. Shirzadi, L. Ling, Convergent overdetermined-RBF-MLPG for solving second order elliptic PDEs, Adv. Appl. Math. Mech., accepted for publication. · Zbl 1262.35096
[17] A. Bitsadze, A. Samarskii, “On some simple generalizations of linear elliptic boundary problems,” Sov. Math. Dokl., 10, 398-400 (1969). · Zbl 0187.35501
[18] V. Il’in, E. Moiseev, “Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects,” Differ. Equ., 23, 803-810 (1987). · Zbl 0668.34025
[19] V. Il’in, E. Moiseev, “Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator,” Differ. Equ., 23, 979-987 (1987). · Zbl 0668.34024
[20] A. Bastys, F. Ivanauskas, M. Sapagovas, “An explicit solution of a parabolic equation with nonlocal boundary conditions,” Lith. Math. J., 45, 257-271 (2005). · Zbl 1103.35330 · doi:10.1007/s10986-005-0028-1
[21] F. Ivanauskas, T. Meskauskas, M. Sapagovas, “Stability of difference schemes for two- dimensional parabolic equations with nonlocal boundary conditions,” Appl. Math. Comput., 215, 2716-2732 (2009). · Zbl 1191.65117 · doi:10.1016/j.amc.2009.09.012
[22] S. Abbasbandy, A. Shirzadi, “A meshless method for two-dimensional diffusion equation with an integral condition,” Eng. Anal. Bound. Elem., 34, No. 12, 1031-1037 (2010). · Zbl 1244.76068 · doi:10.1016/j.enganabound.2010.07.002
[23] “‘On the solution of the non-local parabolic partial differential equations via radial basis functions,” Appl. Math. Model., 33, No. 3, 1729-1738 (2009). · Zbl 1168.65403
[24] M. Dehghan, M. Ramezani, “Composite spectral method for solution of the diffusion equation with specification of energy,” Numer. Methods Partial Differ. Equ., 24, No. 3, 950-959 (2008). · Zbl 1142.65080 · doi:10.1002/num.20299
[25] S. Abbasbandy, A. Shirzadi, “MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions,” Appl. Numer. Math., 61, 170-180 (2011). · Zbl 1206.65229 · doi:10.1016/j.apnum.2010.09.002
[26] B. J. Noye, M. Dehghan, “New explicit finite difference schemes for two-dimensional diffusion subject to specification of mass,” Numer. Methods Partial Differ. Equ., 15, No. 4, 521-534 (1999). · Zbl 0939.65103 · doi:10.1002/(SICI)1098-2426(199907)15:4<521::AID-NUM7>3.0.CO;2-R
[27] S. Atluri, H.-G. Kim, J. Y. Cho, “A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) and local boundary integral equation (LBIE) methods,” Comput. Mech., 24, 348-372 (1999). · Zbl 0977.74593 · doi:10.1007/s004660050457
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.