×

Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes. (English) Zbl 1388.83046

Summary: We derive exact brane solutions of minimally coupled Einstein-Maxwell-scalar gravity in \(d\) + 2 dimensions with a vanishing scalar potential and we show that these solutions are conformal to the Lifshitz spacetime whose dual QFT is characterized by hyperscaling violation. These solutions, together with the AdS brane and the domain wall sourced by an exponential potential, give the complete list of scalar branes sourced by a generic potential having simple (scale-covariant) scaling symmetries not involving Galilean boosts. This allows us to give a classification of both simple and interpolating brane solution of minimally coupled Einstein-Maxwell-scalar gravity having no Schrödinger isometries, which may be very useful for holographic applications.

MSC:

83C22 Einstein-Maxwell equations
81T20 Quantum field theory on curved space or space-time backgrounds
83C57 Black holes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-dilaton theories with a Liouville potential, Phys. Rev.D 80 (2009) 024028 [arXiv:0905.3337] [INSPIRE].
[2] S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS5, Phys. Rev.D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].
[3] K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP08 (2010) 078 [arXiv:0911.3586] [INSPIRE]. · Zbl 1290.83038 · doi:10.1007/JHEP08(2010)078
[4] M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP03 (2010) 100 [arXiv:0912.3520] [INSPIRE]. · Zbl 1271.83043 · doi:10.1007/JHEP03(2010)100
[5] G. Bertoldi, B.A. Burrington, A.W. Peet and I.G. Zadeh, Lifshitz-like black brane thermodynamics in higher dimensions, Phys. Rev.D 83 (2011) 126006 [arXiv:1101.1980] [INSPIRE].
[6] M. Cadoni, S. Mignemi and M. Serra, Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field, Phys. Rev.D 84 (2011) 084046 [arXiv:1107.5979] [INSPIRE].
[7] B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP01 (2012) 089 [arXiv:1110.2320] [INSPIRE]. · Zbl 1306.81104 · doi:10.1007/JHEP01(2012)089
[8] M. Cadoni, S. Mignemi and M. Serra, Black brane solutions and their solitonic extremal limit in Einstein-scalar gravity, Phys. Rev.D 85 (2012) 086001 [arXiv:1111.6581] [INSPIRE].
[9] M. Cadoni and S. Mignemi, Phase transition and hyperscaling violation for scalar black branes, JHEP06 (2012) 056 [arXiv:1205.0412] [INSPIRE]. · Zbl 1397.83055 · doi:10.1007/JHEP06(2012)056
[10] M. Cadoni and M. Serra, Hyperscaling violation for scalar black branes in arbitrary dimensions, JHEP11 (2012) 136 [arXiv:1209.4484] [INSPIRE]. · doi:10.1007/JHEP11(2012)136
[11] B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP04 (2013) 053 [arXiv:1212.2625] [INSPIRE]. · doi:10.1007/JHEP04(2013)053
[12] M. Cadoni, P. Pani and M. Serra, Infrared behavior of scalar condensates in effective holographic theories, JHEP06 (2013) 029 [arXiv:1304.3279] [INSPIRE]. · doi:10.1007/JHEP06(2013)029
[13] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[14] G.T. Horowitz and J. Polchinski, Gauge/gravity duality, in Approaches to quantum gravity, D. Oriti ed. Cambridge University Press, Cambridge U.K. (2009), gr-qc/0602037 [INSPIRE]. · Zbl 1183.83041
[15] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [INSPIRE]. · Zbl 1181.83003 · doi:10.1088/0264-9381/26/22/224002
[16] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE]. · Zbl 1404.82086 · doi:10.1103/PhysRevLett.101.031601
[17] G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev.D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].
[18] C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys.A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE]. · Zbl 1180.82218
[19] G.T. Horowitz, Introduction to holographic superconductors, Lect. Notes Phys.828 (2011) 313 [arXiv:1002.1722]. · Zbl 1246.83009 · doi:10.1007/978-3-642-04864-7_10
[20] M. Cadoni and P. Pani, Holography of charged dilatonic black branes at finite temperature, JHEP04 (2011) 049 [arXiv:1102.3820] [INSPIRE]. · doi:10.1007/JHEP04(2011)049
[21] S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett.102 (2009) 061601 [arXiv:0807.1737] [INSPIRE]. · doi:10.1103/PhysRevLett.102.061601
[22] B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP12 (2011) 036 [arXiv:1107.2116] [INSPIRE]. · Zbl 1306.81237 · doi:10.1007/JHEP12(2011)036
[23] X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP06 (2012) 041 [arXiv:1201.1905] [INSPIRE]. · doi:10.1007/JHEP06(2012)041
[24] K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev.D 85 (2012) 106006 [arXiv:1202.5935] [INSPIRE].
[25] E. Perlmutter, Hyperscaling violation from supergravity, JHEP06 (2012) 165 [arXiv:1205.0242] [INSPIRE]. · doi:10.1007/JHEP06(2012)165
[26] M. Ammon, M. Kaminski and A. Karch, Hyperscaling-violation on probe D-branes, JHEP11 (2012) 028 [arXiv:1207.1726] [INSPIRE]. · doi:10.1007/JHEP11(2012)028
[27] J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, JHEP02 (2013) 147 [arXiv:1208.1752] [INSPIRE]. · Zbl 1342.83329 · doi:10.1007/JHEP02(2013)147
[28] M. Alishahiha and H. Yavartanoo, On holography with hyperscaling violation, JHEP11 (2012) 034 [arXiv:1208.6197] [INSPIRE]. · doi:10.1007/JHEP11(2012)034
[29] P. Dey and S. Roy, Lifshitz metric with hyperscaling violation from NS5-Dp states in string theory, Phys. Lett.B 720 (2013) 419 [arXiv:1209.1049] [INSPIRE]. · Zbl 1323.83028 · doi:10.1016/j.physletb.2013.02.039
[30] J. Sadeghi, B. Pourhasan and F. Pourasadollah, Thermodynamics of Schrödinger black holes with hyperscaling violation, Phys. Lett.B 720 (2013) 244 [arXiv:1209.1874] [INSPIRE]. · Zbl 1372.83050 · doi:10.1016/j.physletb.2013.02.011
[31] M. Alishahiha, E. O Colgain and H. Yavartanoo, Charged black branes with hyperscaling violating factor, JHEP11 (2012) 137 [arXiv:1209.3946] [INSPIRE]. · doi:10.1007/JHEP11(2012)137
[32] B.S. Kim, Hyperscaling violation : a unified frame for effective holographic theories, JHEP11 (2012) 061 [arXiv:1210.0540] [INSPIRE]. · doi:10.1007/JHEP11(2012)061
[33] M. Edalati, J.F. Pedraza and W. Tangarife Garcia, Quantum fluctuations in holographic theories with hyperscaling violation, Phys. Rev.D 87 (2013) 046001 [arXiv:1210.6993] [INSPIRE].
[34] J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic models for theories with hyperscaling violation, JHEP04 (2013) 159 [arXiv:1212.3263] [INSPIRE]. · doi:10.1007/JHEP04(2013)159
[35] S. Cremonini and A. Sinkovics, Spatially modulated instabilities of geometries with hyperscaling violation, JHEP01 (2014) 099 [arXiv:1212.4172] [INSPIRE]. · doi:10.1007/JHEP01(2014)099
[36] M. Hassaïne, New black holes of vacuum Einstein equations with hyperscaling violation and nil geometry horizons, Phys. Rev.D 91 (2015) 084054 [arXiv:1503.01716] [INSPIRE].
[37] M. Bravo-Gaete, S. Gomez and M. Hassaine, Towards the Cardy formula for hyperscaling violation black holes, Phys. Rev.D 91 (2015) 124038 [arXiv:1505.00702] [INSPIRE].
[38] G. Kofinas, Hyperscaling violating black holes in scalar-torsion theories, Phys. Rev.D 92 (2015) 084022 [arXiv:1507.07434] [INSPIRE].
[39] A. Salvio, Holographic superfluids and superconductors in dilaton-gravity, JHEP09 (2012) 134 [arXiv:1207.3800] [INSPIRE]. · doi:10.1007/JHEP09(2012)134
[40] D. Roychowdhury, Hydrodynamics from scalar black branes, JHEP04 (2015) 162 [arXiv:1502.04345] [INSPIRE]. · Zbl 1388.83358 · doi:10.1007/JHEP04(2015)162
[41] N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP01 (2012) 125 [arXiv:1111.1023] [INSPIRE]. · Zbl 1306.81128 · doi:10.1007/JHEP01(2012)125
[42] K. Narayan, T. Takayanagi and S.P. Trivedi, AdS plane waves and entanglement entropy, JHEP04 (2013) 051 [arXiv:1212.4328] [INSPIRE]. · Zbl 1342.83030 · doi:10.1007/JHEP04(2013)051
[43] K. Narayan, Non-conformal brane plane waves and entanglement entropy, Phys. Lett.B 726 (2013) 370 [arXiv:1304.6697] [INSPIRE]. · Zbl 1311.81062 · doi:10.1016/j.physletb.2013.07.061
[44] S. Cremonini and X. Dong, Constraints on renormalization group flows from holographic entanglement entropy, Phys. Rev.D 89 (2014) 065041 [arXiv:1311.3307] [INSPIRE].
[45] K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett.96 (2006) 191301 [hep-th/0602260] [INSPIRE]. · doi:10.1103/PhysRevLett.96.191301
[46] E. Shaghoulian, FRW cosmologies and hyperscaling-violating geometries: higher curvature corrections, ultrametricity, Q-space/QFT duality and a little string theory, JHEP03 (2014) 011 [arXiv:1308.1095] [INSPIRE]. · doi:10.1007/JHEP03(2014)011
[47] M. Cadoni and M. Ciulu, Dark energy from holographic theories with hyperscaling violation, JHEP05 (2014) 089 [arXiv:1311.4098] [INSPIRE]. · doi:10.1007/JHEP05(2014)089
[48] S. Mignemi and N. Pintus, An exactly solvable inflationary model, Gen. Rel. Grav.47 (2015) 51 [arXiv:1404.4720] [INSPIRE]. · Zbl 1317.83071 · doi:10.1007/s10714-015-1892-6
[49] M. Cadoni, E. Franzin and S. Mignemi, Inflation as de Sitter instability, arXiv:1510.04030 [INSPIRE].
[50] M. Cadoni, Scalar black branes with non-AdS asymptotics, in the proceedings of the 13thMarcel Grossmann Meeting (MG13), July 1-7, Stockholm, Sweden (2012), R. Ruffini et al. eds., World Scientific (2013), arXiv:1305.7379 [INSPIRE].
[51] W. Israel, Event horizons in static vacuum space-times, Phys. Rev.164 (1967) 1776 [INSPIRE]. · doi:10.1103/PhysRev.164.1776
[52] J.D. Bekenstein, Novel ‘no scalar hair’ theorem for black holes, Phys. Rev.D 51 (1995) 6608 [INSPIRE].
[53] T. Hertog, Towards a novel no-hair theorem for black holes, Phys. Rev.D 74 (2006) 084008 [gr-qc/0608075] [INSPIRE].
[54] A.I. Janis, E.T. Newman and J. Winicour, Reality of the Schwarzschild singularity, Phys. Rev. Lett.20 (1968) 878 [INSPIRE]. · doi:10.1103/PhysRevLett.20.878
[55] M. Wyman, Static spherically symmetric scalar fields in general relativity, Phys. Rev.D 24 (1981) 839 [INSPIRE].
[56] M. Cadoni and E. Franzin, Asymptotically flat black holes sourced by a massless scalar field, Phys. Rev.D 91 (2015) 104011 [arXiv:1503.04734] [INSPIRE].
[57] M. Cadoni and E. Franzin, Black holes sourced by a massless scalar, arXiv:1510.02076 [INSPIRE]. · Zbl 1388.83046
[58] D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev.D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].
[59] K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett.101 (2008) 061601 [arXiv:0804.4053] [INSPIRE]. · Zbl 1228.81247 · doi:10.1103/PhysRevLett.101.061601
[60] C. Duval, M. Hassaine and P.A. Horvathy, The geometryc of Schrödinger symmetry in gravity background/non-relativistic CFT, Annals Phys.324 (2009) 1158 [arXiv:0809.3128] [INSPIRE]. · Zbl 1162.81034 · doi:10.1016/j.aop.2009.01.006
[61] J. Hartong, E. Kiritsis and N.A. Obers, Lifshitz space-times for Schrödinger holography, Phys. Lett.B 746 (2015) 318 [arXiv:1409.1519] [INSPIRE]. · Zbl 1343.81224 · doi:10.1016/j.physletb.2015.05.010
[62] J. Hartong, E. Kiritsis and N.A. Obers, Schrödinger Invariance from Lifshitz Isometries in Holography and Field Theory, Phys. Rev.D 92 (2015) 066003 [arXiv:1409.1522] [INSPIRE].
[63] T. Andrade, C. Keeler, A. Peach and S.F. Ross, Schrödinger holography with z = 2, Class. Quant. Grav.32 (2015) 085006 [arXiv:1412.0031] [INSPIRE]. · Zbl 1328.83054 · doi:10.1088/0264-9381/32/8/085006
[64] H.J. Boonstra, K. Skenderis and P.K. Townsend, The domain wall/QFT correspondence, JHEP01 (1999) 003 [hep-th/9807137] [INSPIRE]. · Zbl 0965.81078 · doi:10.1088/1126-6708/1999/01/003
[65] I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP04 (2009) 062 [arXiv:0901.1487] [INSPIRE]. · doi:10.1088/1126-6708/2009/04/062
[66] C. Martinez, R. Troncoso and J. Zanelli, Exact black hole solution with a minimally coupled scalar field, Phys. Rev.D 70 (2004) 084035 [hep-th/0406111] [INSPIRE].
[67] C. Martinez and R. Troncoso, Electrically charged black hole with scalar hair, Phys. Rev.D 74 (2006) 064007 [hep-th/0606130] [INSPIRE].
[68] J. de Boer, The Holographic renormalization group, in the proceedings of the Workshop on the quantum structure of space-time and the geometrical nature of fundamental interactions, October 4-10, Berlin, Germany (2000), E.A. Bergshoeff et al. eds., Wiley (2001), hep-th/0101026 [INSPIRE]. · Zbl 0989.81538
[69] S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett.B 683 (2010) 201 [arXiv:0908.0011] [INSPIRE]. · doi:10.1016/j.physletb.2009.12.017
[70] C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP11 (2010) 151 [arXiv:1005.4690] [INSPIRE]. · Zbl 1294.81178 · doi:10.1007/JHEP11(2010)151
[71] S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys.4 (2000) 679 [hep-th/0002160] [INSPIRE]. · Zbl 0984.83036
[72] U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP02 (2008) 019 [arXiv:0707.1349] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/019
[73] U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, holography and thermodynamics of 5D dilaton-gravity, JHEP05 (2009) 033 [arXiv:0812.0792] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.