zbMATH — the first resource for mathematics

New finite elements with embedded strong discontinuities for the modeling of failure in electromechanical coupled solids. (English) Zbl 1225.74095
Summary: This paper presents new finite elements with embedded strong discontinuities in the form of jumps in the mechanical displacement field as well as jumps in the electric potential for the modeling of failure in electromechanical coupled solids. Such materials which are commonly used in smart systems in the form of actuators or sensors are prone to defects in the form of cracks represented by such strong discontinuities. In this work a discrete account of the individual jumps is made with the possibility of their propagation through the individual finite elements without the need of remeshing or refinement strategies. Originated for purely mechanical based materials and commonly referred as the strong discontinuity approach an extension to account for the electromechanical coupling and the additional jumps in the electric potential is made in this work. The decomposition of that methodology into a global problem, representing here the electromechanical boundary value problem, and a local problem through which the strong discontinuities are introduced, serves convenient when developing the corresponding finite elements based on the requirement to avoid stress locking phenomena. This idea is extended in this work to develop new finite elements based on the incorporation of electrical separation modes directly into the discrete formulation, keeping its local and computational efficient property with regard to the storage and possible static condensation of the parameters used to describe the mechanical and electrical discontinuities. On a constitutive level, the mechanical traction separation law is extended to account for a softening type behavior in the relation between the normal component of the electric displacement field and the surface charge density. This is accomplished through the derivation of a localized electromechanical damage model based on the principle of maximum damage dissipation. The performance of the resulting new finite elements is illustrated with several numerical simulations including a compact tension test and a three point bending test of piezoelectric ceramics and compared with experimental results available in the literature.

74S05 Finite element methods applied to problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74R10 Brittle fracture
Full Text: DOI
[1] Arias, I.; Serebrinsky, S.; Ortiz, M., A phenomenological cohesive model of ferroelectric fatigue, Acta mater., 54, 975-984, (2006)
[2] F. Armero, Formulation and numerical analysis of an anisotropic damage model with a localized dissipative mechanism, Tech. Rep. SEMM/UCB 97/11, Department of Civil and Environmental Engineering, University of California, Berkeley, 1997.
[3] Armero, F., Large-scale modeling of localized dissipative mechanisms in a local continuum: applications to the numerical simulation of strain localization in rate-dependent inelastic solids, Mech. cohes. frict. mater., 4, 101-131, (1999)
[4] Armero, F.; Ehrlich, D., Finite element methods for the multi-scale modeling of softening hinge lines in plates at failure, Comput. methods appl. mech. engrg., 195, 1283-1324, (2006) · Zbl 1129.74043
[5] F. Armero, K. Garikipati, Recent advances in the analysis and numerical simulation of strain localization in inelastic solids, in: Proceedings of the 4th Computational Plasticity Conference, Barcelona, 1995, pp. 1-15.
[6] Armero, F.; Garikipati, K., An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids, Int. J. solids struct., 33, 2863-2885, (1996) · Zbl 0924.73084
[7] Armero, F.; Linder, C., New finite elements with embedded strong discontinuities in the finite deformation range, Comput. methods appl. mech. engrg., 197, 3138-3170, (2008) · Zbl 1194.74357
[8] Armero, F.; Linder, C., Numerical simulation of dynamic fracture using finite elements with embedded discontinuities, Int. J. fract., 160, 119-141, (2009) · Zbl 1273.74422
[9] Baesu, E., On electroacoustic energy flux, Z. angew. math. phys., 54, 1001-1009, (2003) · Zbl 1141.74312
[10] Béchet, E.; Scherzer, M.; Kuna, M., Application of the X-FEM to the fracture of piezoelectric materials, Int. J. numer. methods engrg., 77, 1535-1565, (2009) · Zbl 1158.74477
[11] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. numer. methods engrg., 45, 601-620, (1999) · Zbl 0943.74061
[12] Belytschko, T.; Chen, H.; Xu, J.; Zi, G., Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Int. J. numer. methods engrg., 58, 1873-1905, (2003) · Zbl 1032.74662
[13] Benjeddou, A., Advances in piezoelectric finite element modeling of adaptive structural elements: a survey, Comput. struct., 76, 347-363, (2000)
[14] Callari, C.; Armero, F., Finite element methods for the analysis of strong discontinuities in coupled poro-plastic media, Comput. methods appl. mech. engrg., 191, 4371-4400, (2002) · Zbl 1124.74324
[15] Chapelle, D.; Bathe, K.J., The inf – sup test, Comput. struct., 47, 537-545, (1993) · Zbl 0780.73074
[16] de Borst, R.; Sluys, L.J., Localization in a Cosserat continuum under static and dynamic loading conditions, Comput. methods appl. mech. engrg., 90, 805-827, (1991)
[17] W.F. Deeg, The analysis of dislocation, crack and inclusion problems in piezoelectric solids, Ph.D. Thesis, Stanford University, 1980.
[18] Dvorkin, E.N.; Cuitiño, A.M.; Gioia, G., Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions, Int. J. numer. methods engrg., 30, 541-564, (1990) · Zbl 0729.73209
[19] Ehrlich, D.; Armero, F., Finite element methods for the analysis of softening plastic hinges in beams and frames, Comput. mech., 35, 237-264, (2005) · Zbl 1109.74358
[20] Fu, R.; Zhang, T.Y., Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics, J. am. ceram. soc., 83, 1215-1218, (2000)
[21] Gürses, E.; Miehe, C., A computational framework of three-dimensional configurational-force-driven brittle crack propagation, Comput. methods appl. mech. engrg., 198, 1413-1428, (2009) · Zbl 1227.74070
[22] Hansbo, A.; Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. methods appl. mech. engrg., 193, 3523-3540, (2004) · Zbl 1068.74076
[23] Hao, T.H.; Shen, Z.Y., A new electric boundary condition of electric fracture mechanics and its application, Engrg. fract. mech., 47, 793-802, (1994)
[24] Huber, J.E., Micromechanical modelling of ferroelectrics, Curr. opin. solid state mater. sci., 9, 100-106, (2005)
[25] A.E. Huespe, J. Oliver, P.J. Sanchez, S. Blanco, V. Sonzogni, Strong discontinuity approach in dynamic fracture simulations, in: Mecánica Computacional XXV, 2006, pp. 1997-2018.
[26] Hughes, T.J.R., The finite element method, (2000), Dover Publications
[27] Kamlah, M., Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena, Continuum mech. thermodyn., 13, 219-268, (2001) · Zbl 1049.74021
[28] Kuna, M., Finite element analyses of cracks in piezoelectric structures: a survey, Arch. appl. mech., 76, 725-745, (2006) · Zbl 1161.74474
[29] Kuna, M., Fracture mechanics of piezoelectric materials – where are we right now?, Engrg. fract. mech., 77, 309-326, (2010)
[30] Landau, L.D.; Lifshitz, E.M., The classical theory of fields, Course of theoretical physics, vol. 2, (1975), Pergamon Press Oxford · Zbl 0178.28704
[31] Landis, C.M., Energetically consistent boundary conditions for electromechanical fracture, Int. J. solids struct., 4, 6291-6315, (2004) · Zbl 1120.74755
[32] Landis, C.M., Non-linear constitutive modeling of ferroelectrics, Curr. opin. solid state mater. sci., 8, 59-69, (2004)
[33] Li, W.; McMeeking, R.M.; Landis, C.M., On the crack face boundary conditions in electromechanical fracture and an experimental protocol for determining energy release rates, Eur. J. mech. A: solids, 27, 285-301, (2008) · Zbl 1154.74378
[34] Linder, C.; Armero, F., Finite elements with embedded strong discontinuities for the modeling of failure in solids, Int. J. numer. methods engrg., 72, 1391-1433, (2007) · Zbl 1194.74431
[35] Linder, C.; Armero, F., Finite elements with embedded branching, Finite elem. anal. des., 45, 280-293, (2009)
[36] Lorentz, E.; Andrieux, S., A variational formulation for nonlocal damage models, Int. J. fract., 15, 119-138, (1999) · Zbl 1024.74005
[37] McMeeking, R.M., Towards a fracture mechanics for brittle piezoelectric and dielectric materials, Int. J. fract., 108, 25-41, (2001)
[38] McMeeking, R.M., The energy release rate for a griffith crack in a piezoelectric material, Engrg. fract. mech., 71, 1149-1163, (2004)
[39] Miehe, C.; Gürses, E., A robust algorithm for configurational-force-driven brittle crack propagation with r-adaptive mesh alignment, Int. J. numer. methods engrg., 72, 127-155, (2007) · Zbl 1194.74444
[40] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically-consistent phase field models of fracture: variational principles and multi-field FE implementations, Int. J. numer. methods engrg., 83, 1273-1311, (2010) · Zbl 1202.74014
[41] Miehe, C.; Welschinger, F.; Hofacker, M., A phase field model of electromechanical fracture, J. mech. phys. solids, 58, 1716-1740, (2010) · Zbl 1200.74123
[42] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 131-150, (1999) · Zbl 0955.74066
[43] Mosler, J.; Meschke, G., 3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations, Int. J. numer. methods engrg., 57, 1553-1576, (2003) · Zbl 1062.74623
[44] Needleman, A., A continuum model for void nucleation by inclusion debonding, J. appl. mech., 54, 525-531, (1987) · Zbl 0626.73010
[45] Nowacki, W., Foundations of linear piezoelectricity, (), 105-157
[46] Oliver, J., Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 1: fundamentals, part 2: numerical simulation, Int. J. numer. methods engrg., 39, 3575-3623, (1996) · Zbl 0888.73018
[47] Oliver, J.; Huespe, A.E., Theoretical and computational issues in modelling material failure in strong discontinuity scenarios, Comput. methods appl. mech. engrg., 193, 2987-3014, (2004) · Zbl 1067.74505
[48] Oliver, J.; Huespe, A.E.; Pulido, M.D.G.; Samaniego, E., On the strong discontinuity approach in finite deformation settings, Int. J. numer. methods engrg., 56, 1051-1082, (2003) · Zbl 1031.74010
[49] Ortiz, M., A constitutive theory for the inelastic behavior of concrete, Mech. mater., 4, 67-93, (1985)
[50] Ortiz, M.; Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. numer. methods engrg., 44, 1267-1282, (1999) · Zbl 0932.74067
[51] Park, S.; Sun, C.-T., Fracture criteria for piezoelectric ceramics, J. am. ceram. soc., 78, 1475-1480, (1995)
[52] Parton, V.Z., Fracture mechanics of piezoelectric materials, Acta astronaut., 3, 671-683, (1976) · Zbl 0351.73115
[53] Rots, J.G.; Nauta, P.; Kusters, G.M.A.; Blaauwendraad, J., Smeared crack approach and fracture localization in concrete, Heron, 30, 1, 1-48, (1985)
[54] Schröder, J.; Gross, D., Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials, Arch. appl. mech., 73, 533-552, (2004) · Zbl 1145.74348
[55] Simionescu-Panait, O.; Soós, E., Wave propagation in piezoelectric crystals subjected to initial deformations and electric fields, Math. mech. solids, 6, 437-445, (2001) · Zbl 1018.74019
[56] Simo, J.C.; Hughes, T.J.R., On the variational foundations of assumed strain methods, J. appl. mech., 53, 51-54, (1986) · Zbl 0592.73019
[57] Simo, J.C.; Ju, J.W., Strain- and stress-based continuum damage models - I. formulation, II. computational aspects, Int. J. solids struct., 23, 821-869, (1987) · Zbl 0634.73107
[58] J.C. Simo, J. Oliver, A new approach to the analysis and simulation of strong discontinuities, in: Z. Bažant, Z. Bittnar, M. Jirasek, J. Mazars (Eds.), Fracture and Damage in Quasibrittle Structures, vols. 2-6, 1994, pp. 25-39.
[59] Simo, J.C.; Oliver, J.; Armero, F., An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids, Comput. mech., 12, 277-296, (1993) · Zbl 0783.73024
[60] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[61] Steinmann, P., A finite element formulation for strong discontinuities in fluid-saturated porous media, Mech. cohes. frict. mater., 4, 133-152, (1999)
[62] Suo, Z.; Kuo, C.; Barnett, D.; Willis, J., Fracture mechanics for piezoelectric ceramics, J. mech. phys. solids, 40, 4, 739-765, (1992) · Zbl 0825.73584
[63] Sze, K.Y.; Pan, Y.S., Hybrid finite element models for piezoelectric materials, J. sound vib., 226, 519-547, (1999)
[64] Truesdell, C.; Toupin, R., The classical field theories, (), 226-795
[65] Utzinger, J.; Steinmann, P.; Menzel, A., On the simulation of cohesive fatigue effects in grain boundaries of a piezoelectric mesostructure, Int. J. solids struct., 45, 4687-4708, (2008) · Zbl 1169.74396
[66] Verhoosel, C.V.; Gutiérrez, M.A., Modelling inter- and transgranular fracture in piezoelectric polycrystals, Engrg. fract. mech., 76, 742-760, (2009)
[67] Verhoosel, C.V.; Remmers, J.J.C.; Gutiérrez, M.A., A partition of unity-based multiscale approach for modelling fracture in piezoelectric ceramics, Int. J. numer. methods engrg., 82, 966-994, (2010) · Zbl 1188.74074
[68] Wang, H.; Singh, R.N., Crack propagation in piezoelectric ceramics: effects of applied electric fields, J. appl. phys., 81, 7471-7479, (1997)
[69] G.N. Wells, Discontinuous modelling of strain localisation and failure, Ph.D. Thesis, Technical University Delft, 2001.
[70] Zhang, T.-Y.; Zhao, M.; Tong, P., Fracture of piezoelectric ceramics, Adv. appl. mech., 38, 147-289, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.