×

Evolution of material voids for highly anisotropic surface energy. (English) Zbl 1079.74513

Summary: We consider the evolution by surface diffusion of material voids in a linearly elastic solid, focusing on the evolution of voids with large surface energy anisotropy. It is well known that models for the time evolution of similar material surfaces can become mathematically ill-posed when the surface energy is highly anisotropic. In some cases, this ill-posedness has been associated with the formation of corners along the interface. Here the ill-posedness is removed through a regularization which incorporates higher order terms in the surface energy. Spectrally accurate numerical simulations are performed to calculate the steady-state solution branches and time-dependent evolution of voids, with a particular emphasis on inferring trends in the zero regularization \((c \to 0)\) limit. For steady voids with large anisotrop,y we find that apparent corners form as \(c \to 0\). In the presence of elastic stresses \(\sigma\), the limiting corner angles are most often found to differ from angles found on the \((\sigma=0)\) Wulff shape. For large elastic stresses we find that steady solutions no longer exist; instead the void steadily lengthens via a filamenting instability referred to as tip streaming.

MSC:

74A50 Structured surfaces and interfaces, coexistent phases
74E10 Anisotropy in solid mechanics
82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akaiwa, N.; Thornton, K.; Voorhees, P. W., Large scale simulations of microstructural evolution in elastically stressed solids, J. Comp. Phys., 173, 61-86 (2001) · Zbl 1056.74057
[2] Angenant, S.; Gurtin, M. E., Multiphase thermodynamics with interfacial structure. 2. Evolution of an isothermal interface, Arch. Rat. Mech. Anal., 108, 323-391 (1989) · Zbl 0723.73017
[3] Arzt, E.; Kraft, O.; Nix, W.; Sanchez, J., Electromigration failure by shape change of voids in bamboo lines, J. Appl. Phys., 76, 1563 (1994)
[4] Asaro, R. J.; Tiller, W. A., Interface morphology development during stress corrosion crackingPart I. Via surface diffusion, Metall. Trans., 3, 1789-1796 (1972)
[5] Baker, G. R.; Shelley, M. J., Boundary integral techniques for multi-connected domains, J. Comp. Phys., 64, 112 (1986) · Zbl 0596.65083
[6] Burton, W. K.; Cabrera, N.; Frank, F. C., Trans. R. Soc. London, 243, 299 (1951)
[7] Ceniceros, H.; Hou, T., The singular perturbation of surface tension in Hele-Shaw flows, J. Fluid Mech., 409, 251-272 (2000) · Zbl 0991.76020
[8] Chiu, C-H.; Gao, H., Stress singularities along a cycloid rough surface, Int. J. Solids Struct., 30, 2983-3102 (1993) · Zbl 0797.73004
[9] Coriell, R. F.; Sekerka, R. F., The effect of the anisotropy of surface tension and interface kinetics on morphological instability, J. Cryst. Growth, 34, 157 (1976)
[10] Di Carlo, A.; Gurtin, M. E.; Podio-Guidugli, P., A regularized equation for anisotropic motion-by-curvature, SIAM J. Appl. Math., 52, 4, 1111-1119 (1992) · Zbl 0800.73021
[11] Eggleston, J. J.; McFadden, G. B.; Voorhees, P. W., A phase-field model for highly anisotropic interfacial energy, Physica D, 150, 91-103 (2001) · Zbl 0979.35140
[12] Freund, L. B.; Jonsdottir, F., Instability of a biaxially stressed thin film on a substrate due to material diffusion over its free surface, J. Mech. Phys. Solids, 41, 1245-1264 (1993)
[13] Gao, H., A boundary perturbation analysis for elastic inclusions and interfaces, Int. J. Solids Struct., 28, 703-725 (1991) · Zbl 0755.73030
[14] Gao, H., Stress analysis of holes in anisotropic elastic solidsconformal mapping and boundary perturbation, Q. J. Mech. Appl. Math., 45, 149-168 (1992) · Zbl 0768.73014
[15] Gao, H., Some General Properties of Stress-Driven Surface Evolution in a Heteroepitaxial Thin Film Structure, J. Mech. Phys. Solids, 42, 741-772 (1994) · Zbl 0800.73369
[16] Gao, H., The hypocycloid cavitya path from a Griffith slit crack to a cusped cycloid surface, Proc. R. Soc. London, 448, 465-483 (1995)
[17] Gao, H.; Nix, W. D., Surface roughening of heteroepitaxial thin films, Ann. Rev. Mater. Sci., 29, 173-209 (1999)
[18] Gibbs, J.W., 1878. On the equilibrium of heterogeneous substances. In: Gibbs, J.W. (Ed.), The Scientific Papers, Vol. 1. Dover, New York, 1961.; Gibbs, J.W., 1878. On the equilibrium of heterogeneous substances. In: Gibbs, J.W. (Ed.), The Scientific Papers, Vol. 1. Dover, New York, 1961. · JFM 10.0759.01
[19] Golovin, A. A.; Davis, S. H.; Nepomnyashchy, A. A., A convective Cahn-Hilliard model for the formation of facets and corners in crystal growth, Physica D, 122, 202-230 (1998) · Zbl 0952.74050
[20] Greengard, L.; Kropinski, M. C.; Mayo, A., Integral equation methods for Stokes flow and isotropic elasticity in the plane, J. Comp. Phys., 125, 403-414 (1996) · Zbl 0847.76066
[21] Grilhe, J., Surface instabilities and dislocation formation at free surfaces, Europhys. Lett., 23, 141-146 (1993)
[22] Grinfeld, M., Instability of the separation boundary between a nonhydrostatically stressed elastic body and melt, Sov. Phys. Dokl., 31, 831-834 (1986)
[23] Gurtin, M. E., Thermomechanics of Evolving Phase Boundaries in the Plane (1993), Oxford Press: Oxford Press Oxford · Zbl 0787.73004
[24] Gurtin, M. E.; Voorhees, P. W., On the effects of elastic stress on the motion of fully faceted interfaces, Acta Mater., 46, 2103-2112 (1998)
[25] Herring, C., Surface tension as a motivation for sintering, (Kingston, W. E., The Physics of Powder Metallurgy (1951), McGraw Hill: McGraw Hill New York)
[26] Hirth, J. P.; Lothe, J., Theory of Dislocations (1982), Wiley: Wiley New York
[27] Hou, T. Y.; Lowengrub, J. S.; Shelley, M. J., Removing the stiffness from interfacial flows with surface tension, J. Comp. Phys., 114, 312 (1994) · Zbl 0810.76095
[28] Jesson, D. E.; Pennycock, S. J.; Baribeau, J. M.; Houghton, D. C., Phys. Rev. Lett., 71, 1744 (1993)
[29] Jou, H.-J.; Leo, P. H.; Lowengrub, J. S., Microstructural evolution in inhomogeneous elastic media, J. Comp. Phys., 131, 109 (1997) · Zbl 0880.73050
[30] Kessler, D. A.; Koplik, J.; Levine, H., Pattern selection in fingered growth phenomena, Adv. Phys., 37, 255-339 (1987)
[31] Krasny, R., On singularity formation in a vortex sheet and the point vortex approximation, J. Fluid Mech., 167, 65-93 (1986) · Zbl 0601.76038
[32] Kutka, R. V.; Freund, L. B., Minimum Energy Configuration of Epitaxial Material Clusters on a Lattice-Mismatched Substrate, J. Mech. Phys. Solids, 45, 1835-1860 (1997)
[33] Liu, F.; Metiu, H., Dynamics of phase separation of crystal surfaces, Phys. Rev. B, 48, 48-59 (1993)
[34] Mikhlin, S. G., Integral Equations (1957), Pergamon Press: Pergamon Press New York · Zbl 0077.09903
[35] Mullins, W. W., Theory of thermal grooving, J. Appl. Phys., 28, 333-339 (1957)
[36] Mullins, W. W., J. Math. Phys., 3, 754 (1962)
[37] Mullins, W. W., Solid surface morphologies governed by capillarity, Metal Surfaces (1963), American Society for Metals: American Society for Metals Metals Park, OH
[38] Muskhelishvili, N. I., Some Basic Problems in the Mathematical Theory of Elasticity (1953), P. Noordhoff: P. Noordhoff Groningen · Zbl 0052.41402
[39] Nozieres, P., Shape and growth of crystals, (Godreche, C., Solids Far From Equilibrium (1992), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0129.22003
[40] Ozkan, C. S.; Nix, W. D.; Gao, H., Appl. Phys. Lett., 70, 2247 (1997)
[41] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0778.65003
[42] Saad, Y.; Schultz, M., GMRESa generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp., 7, 856 (1986)
[43] Shchukin, V. A.; Bimberg, D., Spontaneous ordering of nanostructures on crystal surfaces, Rev. Mod. Phys., 71, 1125-1172 (1999)
[44] Sidi, A.; Israeli, M., Quadrature methods for periodic singular and weakly singular Fredholm integral equations, J. Sci. Comp., 3, 201 (1988) · Zbl 0662.65122
[45] Siegel, M.; Tanveer, S.; Dai, W., Singular effects of surface tension in evolving Hele-Shaw flows, J. Fluid Mech., 323, 201 (1996) · Zbl 0885.76022
[46] Spencer, B.J., 2003. Asymptotic solutions for the equilibrium crystal shape with small corner energy regularization. Preprint.; Spencer, B.J., 2003. Asymptotic solutions for the equilibrium crystal shape with small corner energy regularization. Preprint.
[47] Spencer, B. J.; Meiron, D. I., Nonlinear evolution of the stress-driven morphological instability in a two-dimensional solid, Acta. Metall. Mater., 42, 3629-3641 (1994)
[48] Spencer, B. J.; Tersoff, J., Equilibrium Shapes and Properties of Epitaxially Strained Solid Islands, Phys. Rev. Lett., 79, 4858-4861 (1997)
[49] Spencer, B. J.; Voorhees, P. W.; Davis, S. H., Morphological instability in epitaxially strained dislocation free solid films, Phys. Rev. Lett., 67, 3696-3699 (1991)
[50] Srolovitz, D. J., On the stability of surfaces of stressed solids, Acta Metall., 37, 621-625 (1989)
[51] Srolovitz, D. J.; Davis, S. H., Do stresses modify wetting angles, Acta Mater., 49, 1005-1007 (2001)
[52] Stewart, J.; Goldenfeld, N., Phys. Rev. A, 46, 6505 (1992)
[53] Suo, Z.; Wang, W., Diffusive void bifurcation in stresses solid, J. Appl. Phys., 76, 3410-3421 (1994)
[54] Voorhees, P. W.; Coriell, S. R.; McFadden, G. B., The effect of anisotropic crystal-melt surface tension on grain boundary groove morphology, J. Cryst. Growth, 67, 425-440 (1984)
[55] Wang, W.; Suo, Z., Shape change of a pore in a stressed solid via surface diffusion motivated by surface and elastic energy variation, J. Mech. Phys. Solids, 45, 709 (1997)
[56] Xia, L.; Bower, A. F.; Suo, Z.; Shih, C. F., A finite element analysis of the motion and evolution of voids due to strain and electromigration induced surface diffusion, J. Mech. Phys. Solids, 45, 1473-1493 (1997) · Zbl 0974.74566
[57] Yang, W. H.; Srolovitz, D. J., Surface morphology evolution in stressed solidssurface diffusion controlled crack initiation, J. Mech. Phys. Solids, 42, 1551-1574 (1994) · Zbl 0825.73655
[58] Zhang, Y. W.; Bower, A. F., Numerical Simulation of Island Formation in a Coherent Strained Epitaxial Thin Film System, J. Mech. Phys. Solids, 42, 2273 (1999) · Zbl 0977.74548
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.