×

Conservative chaos and invariant tori in the modified Sprott a system. (English) Zbl 1459.34109

Summary: Generally, there are few volume-conservative but not energy-conservative chaotic systems in the literature. By recomposing the skew-symmetric state matrix of the Sprott A system, a new volume-conservative chaotic system is coined in this paper. We mainly focus on investigating its dynamical behaviors that relay on the external excitation \(k\), which directly determines the number of equilibria of the system. Without \(k\), there exist two lines of equilibria that can be degenerated into two or four equilibria for the given nonzero initial conditions, while with \(k\), the system is a no-equilibrium system that can produce conservative chaos and invariant tori for different initial conditions. Moreover, these rich dynamical behaviors are illustrated by several numerical techniques including time series, phase portraits, Poincaré sections, bifurcation diagrams and Lyapunov exponents.

MSC:

34C28 Complex behavior and chaotic systems of ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lorenz, En, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 2, 130 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[2] Aguilar-López, R.; Martínez-Guerra, R.; Perez-Pinacho, Ca, Nonlinear observer for synchronization of chaotic systems with application to secure data transmission, Eur. Phys. J. Spec. Top., 223, 8, 1541 (2014) · doi:10.1140/epjst/e2014-02116-0
[3] Maldacena, J.; Shenker, Sh; Stanford, D., A bound on chaos, J. High Energy Phys., 2016, 8, 106 (2016) · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[4] Sciamanna, M.; Shore, Ka, Physics and applications of laser diode chaos, Nat. Photonics, 9, 3, 151 (2015) · doi:10.1038/nphoton.2014.326
[5] Frye, Md; Morita, M.; Vaillant, Cl; Green, Dg; Hutson, Jm, Approach to chaos in ultracold atomic and molecular physics: statistics of near-threshold bound states for Li+ CaH and Li+ CaF, Phys. Rev. A, 93, 5, 052713 (2016) · doi:10.1103/PhysRevA.93.052713
[6] Blagojević, S.; Čupić, Ž.; Ivanović-Šašić, A.; Kolar-Anić, L., Mixed-mode oscillations and chaos in return maps of an oscillatory chemical reaction, Russ. J. Phys. Chem. A, 89, 13, 2349 (2015) · doi:10.1134/S0036024415130063
[7] Khlebodarova, Tm; Kogai, Vv; Fadeev, Si; Likhoshvai, Va, Chaos and hyperchaos in simple gene network with negative feedback and time delays, J. Bioinf. Comput. Biol., 15, 2, 1650042 (2017) · doi:10.1142/S0219720016500426
[8] Salgado, R.; Moore, H.; Jwm, M.; Lively, T.; Malik, S.; Mcdermott, U.; Michiels, S.; Moscow, Ja; Tejpar, S.; Mckee, T., Societal challenges of precision medicine: bringing order to chaos, Eur. J. Cancer, 84, 325 (2017) · doi:10.1016/j.ejca.2017.07.028
[9] Wagemans, J.; Delcourt, S.; Bielen, L.; Moors, P., On the edge of attractive chaos in a series of semi-abstract paintings by Lou Bielen, Art Percept., 5, 4, 337 (2017) · doi:10.1163/22134913-00002099
[10] Wu, Gc; Baleanu, D., Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80, 4, 1697 (2015) · doi:10.1007/s11071-014-1250-3
[11] Matthews, R., On the derivation of a chaotic encryption algorithm, Cryptologia, 13, 1, 29 (1989) · doi:10.1080/0161-118991863745
[12] Habutsu, T., Nishio, Y., Sasase, I., Mori, S.: A secret key cryptosystem by iterating a chaotic map. In: Workshop on the Theory and Application of of Cryptographic Techniques, pp. 127-140. Springer (1991) · Zbl 0766.94011
[13] Fraser, Am; Swinney, Hl, Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33, 2, 1134 (1986) · Zbl 1184.37027 · doi:10.1103/PhysRevA.33.1134
[14] Li, Y.; Wang, C.; Chen, H., A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation, Opt. Lasers Eng., 90, 238 (2017) · doi:10.1016/j.optlaseng.2016.10.020
[15] Yin, Q.; Wang, C., A new chaotic image encryption scheme using breadth-first search and dynamic diffusion, Int. J. Bifurc. Chaos, 28, 4, 1850047 (2018) · Zbl 1391.94111 · doi:10.1142/S0218127418500475
[16] Ullah, A.; Jamal, Ss; Shah, T., A novel scheme for image encryption using substitution box and chaotic system, Nonlinear Dyn., 91, 1, 359 (2018) · doi:10.1007/s11071-017-3874-6
[17] Özkaynak, F., Brief review on application of nonlinear dynamics in image encryption, Nonlinear Dyn., 92, 2, 305 (2018) · doi:10.1007/s11071-018-4056-x
[18] Cheng, G.; Wang, C.; Chen, H., A novel color image encryption algorithm based on hyperchaotic system and permutation-diffusion architecture, Int. J. Bifurc. Chaos, 29, 9, 1950115 (2019) · Zbl 1430.94064 · doi:10.1142/S0218127419501153
[19] Zhang, Q., Zhang, H., Li, Z.: One-way hash function construction based on conservative chaotic systems. In: 2009 Fifth International Conference on Information Assurance and Security, vol. 2, pp. 402-405. IEEE (2009)
[20] Sprott, Jc, Some simple chaotic flows, Phys. Rev. E, 50, 2, R647 (1994) · doi:10.1103/PhysRevE.50.R647
[21] Messias, M.; Reinol, Ac, On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system, Nonlinear Dyn., 88, 2, 807 (2017) · Zbl 1375.37110 · doi:10.1007/s11071-016-3277-0
[22] Messias, M.; Reinol, Ac, On the existence of periodic orbits and KAM tori in the Sprott A system: a special case of the Nosé-Hoover oscillator, Nonlinear Dyn., 92, 3, 1287 (2018) · Zbl 1398.70048 · doi:10.1007/s11071-018-4125-1
[23] Hu, X.; Liu, C.; Ling, L.; Ni, J.; Li, S., Multi-scroll hidden attractors in improved Sprott A system, Nonlinear Dyn., 86, 3, 1725 (2016) · doi:10.1007/s11071-016-2989-5
[24] Dong, E.; Yuan, M.; Du, S.; Chen, Z., A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator, Appl. Math. Model., 73, 40 (2019) · Zbl 1481.37057 · doi:10.1016/j.apm.2019.03.037
[25] Cang, S.; Wu, A.; Wang, Z.; Chen, Z., Distinguishing Lorenz and Chen systems based upon Hamiltonian energy theory, Int. J. Bifurc. Chaos, 27, 2, 1750024 (2017) · Zbl 1362.34022 · doi:10.1142/S0218127417500249
[26] Cang, S.; Li, Y.; Wang, Z., Single crystal-lattice-shaped chaotic and quasi-periodic flows with time-reversible symmetry, Int. J. Bifurc. Chaos, 28, 13, 1830044 (2018) · Zbl 1406.34040 · doi:10.1142/S0218127418300446
[27] Sprott, J.; Jafari, S.; Pham, Vt; Hosseini, Zs, A chaotic system with a single unstable node, Phys. Lett. A, 379, 36, 2030 (2015) · Zbl 1364.37084 · doi:10.1016/j.physleta.2015.06.039
[28] Cang, S.; Wu, A.; Zhang, R.; Wang, Z.; Chen, Z., Conservative chaos in a class of nonconservative systems: theoretical analysis and numerical demonstrations, Int. J. Bifurc. Chaos, 28, 7, 1850087 (2018) · Zbl 1395.34019 · doi:10.1142/S0218127418500876
[29] Jafari, Ma; Mliki, E.; Akgul, A.; Pham, Vt; Kingni, St; Wang, X.; Jafari, S., Chameleon: the most hidden chaotic flow, Nonlinear Dyn., 88, 3, 2303 (2017) · doi:10.1007/s11071-017-3378-4
[30] Wolf, A.; Swift, Jb; Swinney, Hl; Vastano, Ja, Determining Lyapunov exponents from a time series, Physica D, 16, 3, 285 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[31] Kuznetsov, N.; Leonov, G.; Mokaev, T.; Prasad, A.; Shrimali, M., Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system, Nonlinear Dyn., 92, 2, 267 (2018) · Zbl 1398.37090 · doi:10.1007/s11071-018-4054-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.