×

Effect of special rotational deformation on dislocation emission from interface collinear crack tip in nanocrystalline bi-materials. (English) Zbl 1344.74054

Summary: The work is devoted to investigate the interaction between the special rotational deformation and interface collinear cracks in nanocrystalline bi-materials. As an illustrative example, the effect of the disclination quadrupole produced by the special rotational deformation on the emission of lattice dislocation from a finite interfacial crack tip in nanocrystalline bi-material is explored theoretically using the complex variable method. The complex form expression of dislocation force and the critical stress intensity factors for the first edge dislocation emission under remote mode I loadings and mode II loadings are deduced. And the influences of material properties, grain size, disclination strength, disclination location and orientation, special rotational deformation orientations, and crack length on the critical stress intensity factors are discussed in detail. The results show that the special rotational deformation and the relative shear modulus of the upper the lower half plane have great effect on the lattice dislocation emission from the interface collinear crack tip.

MSC:

74R10 Brittle fracture
74E15 Crystalline structure
74A50 Structured surfaces and interfaces, coexistent phases
74M25 Micromechanics of solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhu, L.L., Zheng, X.J.: Influence of interface energy and grain boundary on the elastic modulus of nanocrystalline material. Acta Mech. 213(3), 223-234 (2010) · Zbl 1397.74042 · doi:10.1007/s00707-009-0263-3
[2] Liu, Y.G., Ju, R.Y.: A theoretical model for studying the mechanical properties of bimodal nanocrystalline materials. J. Mater. Res. 30(11), 1836-1843 (2015) · doi:10.1557/jmr.2015.134
[3] Shen, L.M.: Combined grain size, strain rate and loading condition effects on mechanical behaviour of nanocrystalline Cu under high strain rates. Acta Mech Sin. 28(4), 1125-1132 (2012) · Zbl 1293.74058 · doi:10.1007/s10409-012-0140-5
[4] Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041-4065 (2007) · doi:10.1016/j.actamat.2007.01.038
[5] Wang, P., Yang, X.H., Tian, X.B.: Fracture behavior of precracked nanocrystalline materials with grain size gradients. J. Mater. Res. 30(5), 709-716 (2015) · doi:10.1557/jmr.2015.18
[6] Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog Mater Sci. 51, 427-556 (2006) · doi:10.1016/j.pmatsci.2005.08.003
[7] Yu, M., Fang, Q.H., Feng, H., Liu, Y.W.: Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids. Acta Mech. 225(7), 2005-2019 (2014) · Zbl 1401.74028 · doi:10.1007/s00707-013-1039-3
[8] Alizada, A.N., Sofiyev, A.H., Kuruoglu, N.: Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load. Acta Mech. 223, 1371-1383 (2012) · Zbl 1401.74215 · doi:10.1007/s00707-012-0649-5
[9] Yu, M., Fang, Q.H., Feng, H., Liu, Y.W.: Effect of special rotational deformation on dislocation emission from a semi-elliptical blunt crack tip in nanocrystalline solids. J. Mater. Res. 28(6), 798-805 (2013) · doi:10.1557/jmr.2012.405
[10] Zhou, K., Wu, M.S., Nazarov, A.A.: Relaxation of a disclinated tricrystalline nanowire. Acta Mater. 56, 5828-5836 (2008) · doi:10.1016/j.actamat.2008.07.059
[11] Voyiadjis, George Z., Deliktas, Babur: Modeling of strengthening and softening in inelastic nanocrystalline materials with reference to the triple junction and grain boundaries using strain gradient plasticity. Acta Mech. 213(1-2), 3-26 (2010) · Zbl 1272.74073 · doi:10.1007/s00707-010-0338-1
[12] Khan, A.S., Farrok, B., Takacs, L.: Effect of grain refinement on mechanical properties of ball-milled bulk aluminum. Mater. Sci. Eng. A 489, 77-84 (2008) · doi:10.1016/j.msea.2008.01.045
[13] Farrok, B., Khan, A.S.: Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: synthesis, experiment, and constitutive modeling. Int. J. Plast. 25(5), 715-732 (2009) · Zbl 1421.74083 · doi:10.1016/j.ijplas.2008.08.001
[14] Aifantis, E.C.: Deformation and failure of bulk nanograined and UFG materials. Mater. Sci. Eng. A 530, 190-201 (2009) · doi:10.1016/j.msea.2008.04.085
[15] Barai, P., Weng, G.J.: Mechanics of very fine-grained nanocrystalline materials with contribution from grain interior, GB zone, and grain boundary sliding. Int. J. Plast. 25, 2410-2434 (2009) · doi:10.1016/j.ijplas.2009.04.001
[16] Xia, S.H., Wang, J.T.: A micromechanical model of toughening behavior in the dual-phase composite. Int. J. Plast. 26, 1442-1460 (2010) · Zbl 1426.74117 · doi:10.1016/j.ijplas.2010.01.005
[17] Barai, P., Weng, G.J.: Mechanics of a nanocrystalline coating and grain-size dependence of its plastic strength. Mech Mater. 43, 496-504 (2011) · doi:10.1016/j.mechmat.2011.06.006
[18] Liu, Y.G., Zhou, J.Q., Shen, T.D., Hui, D.: Effects of ultrafine nanograins on the fracture toughness of nanocrystalline materials. J. Mater. Res. 26(14), 1734-1741 (2011) · doi:10.1557/jmr.2011.206
[19] Rupert, T.J., Trelewicz, J.R., Schuh, C.A.: Grain boundary relaxation strengthening of nanocrystalline Ni-W alloys. J. Mater. Res. 27(9), 1285 (2012) · doi:10.1557/jmr.2012.55
[20] Liu, Y.G., Zhou, J.Q., Shen, T.D.: A combined dislocation-cohesive zone model for fracture in nanocrystalline materials. J. Mater. Res. 27(4), 694-700 (2012) · doi:10.1557/jmr.2011.442
[21] KOvid’ko, I.A., Sheinerman, A.G.: Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl. Phys. Lett. 90, 171927 (2007) · doi:10.1063/1.2734393
[22] Cheng, S., Ma, E., Wang, Y.M., Kecskes, L.J., Youssef, K.M., Koch, C.C., et al.: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53, 1521-1533 (2005) · doi:10.1016/j.actamat.2004.12.005
[23] Youssef, K.M., Scattergood, R.O., Murty, K.L., Horton, J.A., Koch, C.C.: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 (2005) · doi:10.1063/1.2034122
[24] Youssef, K.M., Scattergood, R.O., Murty, K.L., Koch, C.C.: Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr. Mater. 54, 251-256 (2006) · doi:10.1016/j.scriptamat.2005.09.028
[25] Sergueeva, A.V., Mara, N.A., Mukherjee, A.K.: Grain boundary sliding in nanomaterials at elevated temperatures. J. Mater. Sci. 4, 1433-1438 (2007) · doi:10.1007/s10853-006-0697-0
[26] Liu, L.L., Zhang, Y.S., Zhang, T.Y.: Strain relaxation in heteroepitaxial films by misfit twinning: I. Critical thickness. J. Appl. Phys. 101, 063501 (2007) · doi:10.1063/1.2433368
[27] Zhang, Y.S., Liu, L.L., Zhang, T.Y.: Strain relaxation in heteroepitaxial films by misfit twinning: II. Equilibrium morphology. J. Appl. Phys. 101, 063502 (2007) · doi:10.1063/1.2433547
[28] Zhang, Y.S., Liu, L.L., Zhang, T.Y.: Critical thickness for misfit twinning in an epilayer. Int. J. Solids Struct. 45, 3173-3191 (2008) · Zbl 1169.74481 · doi:10.1016/j.ijsolstr.2008.01.018
[29] Zhao, Y., Qian, J., Daemen, L.L., Pantea, C., Zhang, J., Voroninm, G.A., et al.: Enhancement of fracture toughness in nanostructured diamond-SiC composites. Appl. Phys. Lett. 84, 1356-1358 (2004) · doi:10.1063/1.1650556
[30] Kaminskii, A.A., Akchurin, M.S., Gainutdinov, R.V., et al.: Microhardness and fracture toughness of \[\text{Y}_2\text{O}_3\] Y2O3- and \[\text{Y}_3\text{Al}_5\text{O}_{12}\] Y3Al5O12- based nanocrystalline laser ceramics. Crystallogr. Rep. 50, 569-573 (2005) · doi:10.1134/1.2049410
[31] Bobylev, S.V., Morozov, N.F., Ovid’ko, I.A.: Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys. Rev. Lett. 105, 055504 (2010) · doi:10.1103/PhysRevLett.105.055504
[32] Ovid’ko, I.A., Sheinerman, A.G., Aifantis, E.C.: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59, 5023-5031 (2011) · doi:10.1016/j.actamat.2011.04.056
[33] Feng, H., Fang, Q.H., Zhang, L.C., Liu, Y.W.: Effect of cooperative grain boundary sliding and migration on emission of dislocations from a crack tip in nanocrystalline materials. Mech. Mater. 61(15), 39-48 (2013) · doi:10.1016/j.mechmat.2013.02.006
[34] Yu, M., Fang, Q.H., Liu, Y.W., Xie, C.: The interaction between a piezoelectric screw dislocation dipole and an elliptic blunt crack in elliptical inhomogeneity. Mech. Adv. Mater. Struct. 22(5), 349-358 (2015) · doi:10.1080/15376494.2012.736058
[35] Zhou, K.: Elastic field and effective moduli of periodic composites with arbitrary inhomogeneity distribution. Acta Mech. 223(2), 293-308 (2012) · Zbl 1398.74268 · doi:10.1007/s00707-011-0559-y
[36] Xiao, Z.M., Chen, B.J.: A screw dislocation interacting with a coated fiber. Mech. Mater. 32(8), 485-494 (2000) · doi:10.1016/S0167-6636(00)00016-8
[37] Zhao, Y.X., Zeng, X., Chen, C.P.: Elastic behavior of disclination dipole near nanotube with surface/interface effect. Chin. Phys. B. 23(3), 030202 (2014) · doi:10.1088/1674-1056/23/3/030202
[38] Muskhelishvili, N.L.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Leyden (1975) · Zbl 0297.73008
[39] Zhang, T.Y., Li, J.C.M.: Interaction of an edge dislocation with an interfacial crack. J. Appl. Phys. 72, 2215-2226 (1992) · doi:10.1063/1.351614
[40] Fang, Q.H., Liu, Y.W., Jiang, C.P., Li, B.: Interaction of a wedge disclination dipole with interfacial cracks. Eng. Fract. Mech. 73, 1235-1248 (2006) · doi:10.1016/j.engfracmech.2005.12.010
[41] Fang, Q.H., Feng, H., Liu, Y.W., Lin, S., Zhang, N.: Special rotational deformation effect on the emission of dislocations from a crack tip in deformed nanocrystalline solids. Int. J. Solids Struct. 11-12, 1406-1412 (2012) · doi:10.1016/j.ijsolstr.2012.02.026
[42] Yu, M., Fang, Q.H., Liu, Y.W., Xie, C.: The interaction between a piezoelectric screw dislocation dipole and an elliptic blunt crack in elliptical inhomogeneity. Mech. Adv. Mater. Struct. 22(5), 349-358 (2015) · doi:10.1080/15376494.2012.736058
[43] Zhou, K., Wu, M.S.: Elastic fields due to an edge dislocation in an isotropic film-substrate by the image method. Acta Mech. 211(3-4), 271-292 (2010) · Zbl 1397.74143 · doi:10.1007/s00707-009-0226-8
[44] Zhao, Y.X., Fang, Q.H., Liu, Y.W.: Effect of nanograin boundary sliding on nanovoid growth by dislocation shear loop emission in nanocrystalline materials. Eur. J. Mech-A/Solids 49, 419-429 (2015) · Zbl 06930908 · doi:10.1016/j.euromechsol.2014.09.003
[45] Zhao, Y.X., Fang, Q.H., Liu, Y.W.: Effect of cooperative nanograin boundary sliding and migration on dislocation emission from a blunt nanocrack tip in nanocrystalline materials. Philos. Mag. 94(7), 700-730 (2014) · doi:10.1080/14786435.2013.861091
[46] Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn. Wiley, New York (1964) · Zbl 1365.82001
[47] Creager, M., Paris, P.C.: Elastic field equations for blunt cracks with reference to stress corrosion cracking. Int. J. Fract. 3, 247-252 (1967) · doi:10.1007/BF00182890
[48] Rice, J.R., Thomson, R.: Ductile versus brittle behavior of crystals. Philos. Mag. 29, 73-80 (1974) · doi:10.1080/14786437408213555
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.