×

Effects of radiation heat transfer on entropy generation at thermosolutal convection in a square cavity subjected to a magnetic field. (English) Zbl 1446.76169

Summary: Thermosolutal convection in a square cavity filled with a binary perfect gas mixture and submitted to an oriented magnetic field taking into account the effect of radiation heat transfer is numerically investigated. The cavity is heated and cooled along the active walls whereas the two other walls are adiabatic and insulated. Entropy generation due to heat and mass transfer, fluid friction and magnetic effect has been determined for laminar flow by solving numerically: The continuity, momentum energy and mass balance equations, using a Control Volume Finite-Element Method. The structure of the studied flows depends on five dimensionless parameters which are: The Grashof number, the buoyancy ratio, the Hartman number, the inclination angle of the magnetic field and the radiation parameter.

MSC:

76T17 Two gas multicomponent flows
80A21 Radiative heat transfer
80A19 Diffusive and convective heat and mass transfer, heat flow
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/S0304-8853(01)00494-2 · doi:10.1016/S0304-8853(01)00494-2
[2] DOI: 10.1016/S0017-9310(02)00320-4 · Zbl 1025.76001 · doi:10.1016/S0017-9310(02)00320-4
[3] Ibrahim, Lie-group analysis of radiative and magneticfield effects on free convection and mass transfer flow past a semi-infinite vertical flat plate, Electr. J. Differ. Equ. 39 pp 1– (2005)
[4] DOI: 10.1016/j.ijnonlinmec.2004.01.002 · Zbl 1348.76014 · doi:10.1016/j.ijnonlinmec.2004.01.002
[5] Ramachandra, Transient radiative hydromagnetic free convection flow past an impulsively started vertical plate with uniform heat and mass flux, Theor. Appl. Mech. 33 pp 31– (2006) · Zbl 1177.76464 · doi:10.2298/TAM0601031P
[6] Ramachandra, Finite difference analysis of Radiation and Mass transfer effects on MHD free convection flow past a vertical plate in the presence of heat source/sink, Int. Rev. Pure Appl. Math. 2 pp 141– (2006) · Zbl 1266.76035
[8] DOI: 10.1155/2008/414830 · Zbl 1158.80312 · doi:10.1155/2008/414830
[9] DOI: 10.1080/10407789708913899 · doi:10.1080/10407789708913899
[10] Nield, Convection in Porous Media (1999) · Zbl 0924.76001
[11] DOI: 10.1016/0017-9310(85)90261-3 · doi:10.1016/0017-9310(85)90261-3
[12] Bejan, Second law analysis in heat transfer and thermal design, Adv. Heat Transf. 15 pp 1– (1982) · doi:10.1016/S0065-2717(08)70172-2
[13] Bejan, Entropy Generation Minimization (1996)
[14] DOI: 10.3390/e8010001 · Zbl 1135.80302 · doi:10.3390/e8010001
[15] DOI: 10.1504/PCFD.2007.013885 · doi:10.1504/PCFD.2007.013885
[16] DOI: 10.1504/IJEX.2007.013392 · doi:10.1504/IJEX.2007.013392
[17] Woods, The Thermodynamics of Fluid Systems (1975)
[18] DOI: 10.1080/10407799408914936 · doi:10.1080/10407799408914936
[19] Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Series on Computational Methods in Mechanics and Thermal Science) (1980) · Zbl 0521.76003
[20] DOI: 10.1002/fld.1650030305 · doi:10.1002/fld.1650030305
[21] DOI: 10.1007/s11012-007-9072-8 · Zbl 1163.76414 · doi:10.1007/s11012-007-9072-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.