×

Granger causality-based synaptic weights estimation for analyzing neuronal networks. (English) Zbl 1382.92086

Summary: Granger causality (GC) analysis has emerged as a powerful analytical method for estimating the causal relationship among various types of neural activity data. However, two problems remain not very clear and further researches are needed: (1) The GC measure is designed to be nonnegative in its original form, lacking of the trait for differentiating the effects of excitations and inhibitions between neurons. (2) How is the estimated causality related to the underlying synaptic weights? Based on the GC, we propose a computational algorithm under a best linear predictor assumption for analyzing neuronal networks by estimating the synaptic weights among them. Under this assumption, the GC analysis can be extended to measure both excitatory and inhibitory effects between neurons. The method was examined by three sorts of simulated networks: those with linear, almost linear, and nonlinear network structures. The method was also illustrated to analyze real spike train data from the anterior cingulate cortex (ACC) and the striatum (STR). The results showed, under the quinpirole administration, the significant existence of excitatory effects inside the ACC, excitatory effects from the ACC to the STR, and inhibitory effects inside the STR.

MSC:

92C20 Neural biology
92C42 Systems biology, networks
92B20 Neural networks for/in biological studies, artificial life and related topics

Software:

GCCA; MVGC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, A., Liu, Y., & Abe, N. (2007). Temporal causal modeling with graphical Granger methods. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, 7, 66-75. · doi:10.1145/1281192.1281203
[2] Baccala, L.A., & Sameshima, K. (2001). Partial directed coherence : a new concept in neural stucture determination. Biological Cybernetics, 84, 463-474. · Zbl 1160.92306 · doi:10.1007/PL00007990
[3] Barnett, L., & Seth, A.K. (2014). The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. Journal of Neuroscience Methods, 223, 50-68. · doi:10.1016/j.jneumeth.2013.10.018
[4] Barrett, A.B., & Barnett, L. (2013). Granger causality is designed to measure effect, not mechanism. Frontiers in Neuroinformatics, 7, 1-2. · doi:10.3389/fninf.2013.00006
[5] Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289-300. · Zbl 0809.62014
[6] Bressler, S.L., & Seth, A.K. (2011). Wiener-Granger Causality: A well established methodology. NeuroImage, 58, 323-329. · doi:10.1016/j.neuroimage.2010.02.059
[7] Cadotte, A.J., DeMarse, T.B., He, P., & Ding, M. (2008). Causal measures of structure and plasticity in simulated and living neural networks. PLoS Computational Biology, 3, 1-14.
[8] Cadotte, A.J., DeMarse, T.B., Mareci, T.H., Parekh, M.B., Talathi, S.S., Hwang, D.U., Ditto, W.L., Ding, M., & Carney, P.R. (2010). Granger causality relationships between local field potentials in an animal model of temporal lobe epilepsy. Journal of Neuroscience Methods, 189, 121-129. · doi:10.1016/j.jneumeth.2010.03.007
[9] Dhamala, M., Rangarajan, G., & Ding, M. (2008). Analyzing information flow in brain networks with nonparametric Granger causality. NeuroImage, 41, 354-362. · doi:10.1016/j.neuroimage.2008.02.020
[10] Ding, M.; Chen, Y.; Bressler, SL, Granger Causality: Basic Theory and Application to Neuroscience., 437-460 (2006), Weinheim, Germany · Zbl 1268.92079 · doi:10.1002/9783527609970.ch17
[11] Gomez, L., Budelli, R., Saa, R., Stiber, M., & Segundo, J.P. (2005). Pooled spike trains of correlated presynaptic inputs as realizations of cluster point processes. Biological Cybernetics, 92, 110-127. · Zbl 1097.92004 · doi:10.1007/s00422-004-0534-y
[12] Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424-438. · Zbl 1366.91115 · doi:10.2307/1912791
[13] Granger, C. (1980). Testing for causality: A personal viewpoint. Journal of Economic Dynamics and Control, 2, 329-352. · doi:10.1016/0165-1889(80)90069-X
[14] Greene, W.H. (2002). Econometric Analysis, fifth ed. Upper Saddle River, NJ: Prentice-Hall.
[15] Guo, S., Seth, A.K., Kendrick, K.M., Zhou, C., & Feng, J. (2008). Partial Granger causality - Eliminating exogenous inputs and latent variables. Journal of Neuroscience Methods, 172, 79-93. · doi:10.1016/j.jneumeth.2008.04.011
[16] Hu, S., Dai, G., Worrel, G. A., Dai, Q., & Liang, H. (2011). Causality analysis of neural connectivity: critical examination of existing methods and advances of new methods. IEEE Transactions on Neural Networks, 22, 829-844. · doi:10.1109/TNN.2011.2123917
[17] Huang, J.J., Yen, C.T., Liu, T.L., Tsao, H.W., Hsu, J.W., & Tsai, M.L. (2013). Effects of dopamine D2 agonist quinpirole on neuronal activity of anterior cingulate cortex and striatum in rats. Psychopharmacology, 227, 459-466. · doi:10.1007/s00213-013-2965-4
[18] Izhikevich, E.M. (2003). Simple models of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569-1572. · doi:10.1109/TNN.2003.820440
[19] Kim, S., Putrino, D., Ghosh, S., & Brown, E.N. (2011). A Granger causality measure for point process models of ensemble neural spiking activity. PLoS Computational Biology, 7, 3.
[20] Kitagawa, G. (2010). Introduction to Time Series Modeling: Chapman & Hall/CRC Monographs on Statistics & Applied Probability. · Zbl 1204.62159
[21] Krumin, M., & Shoham, S. (2010). Multivariate autoregressive modeling and Granger causality analysis of multiple spike trains. Computational Intelligence and Neuroscience, 752428. · Zbl 1097.92004
[22] Lehky, S.R. (2010). Decoding poisson spike trains by gaussian filtering. Neural Computation, 22, 1245-1271. · Zbl 1187.92024 · doi:10.1162/neco.2009.07-08-823
[23] Luo, Q., Lu, W., Cheng, W., Valdes-Sosa, P.A., Wen, X., Ding, M., & Feng, J. (2013). Spatio-temporal Granger causality: A new framework. NeuroImage, 79, 241-263. · doi:10.1016/j.neuroimage.2013.04.091
[24] Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis: Springer. · Zbl 1072.62075
[25] Marinazzo, D., Liao, W., Chen, H., & Stramaglia, S. (2011). Nonlinear connectivity by Granger causality. NeuroImage, 58, 330-338. · doi:10.1016/j.neuroimage.2010.01.099
[26] Michailidis, G., & d’Alche-Buc, F. (2013). Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues. Mathematical Biosciences, 246, 326-334. · Zbl 1308.92032 · doi:10.1016/j.mbs.2013.10.003
[27] Nageswaran, J.M., Dutt, N., Krichmar, J.L., Nicolau, A., & Veidenbaum, A.V. (2009). A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks, 22, 791-800. · doi:10.1016/j.neunet.2009.06.028
[28] Nedungadi, A.G., Rangarajan, G., Jain, N., & Ding, M. (2009). Analyzing multiple spike trains with nonparametric granger causality. Journal of Computational Neuroscience, 27, 55-64. · doi:10.1007/s10827-008-0126-2
[29] Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M, Chichilnisky, E.J., & Simoncelli, E.P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454, 995-999. · doi:10.1038/nature07140
[30] Quinn, C.J., Coleman, T.P., Kiyavash, N., & Hatsopoulos, N.G. (2011). Estimating the directed information to infer causal relationships in ensemble neural spike train recordings. Journal of Computational Neuroscience, 30, 17-44. · Zbl 1446.92071 · doi:10.1007/s10827-010-0247-2
[31] Rosenbaum, R., Trousdale, J., & Josic, K. (2011). The effects of pooling on spike train correlations. Frontiers in Neuroscience, 5, 1-10. · doi:10.3389/fnins.2011.00058
[32] Sameshima, K., & Baccala, L. A. (1999). Using partial directed coherence to describe neuronal ensemble interactions. Journal of Neuroscience Methods, 94, 93-103. · doi:10.1016/S0165-0270(99)00128-4
[33] Seth, A.K. (2005). Causal connectivity of evolved neural networks during behavior. Network, 16, 35-54. · doi:10.1080/09548980500238756
[34] Seth, A.K., & Edelman, G.M. (2007). Distinguishing causal interactions in neural populations. Neural Computation, 19, 910-933. · Zbl 1111.92010 · doi:10.1162/neco.2007.19.4.910
[35] Seth, A.K. (2010). A MATLAB toolbox for Granger causal connectivity analysis. Journal of Neuroscience Methods, 186, 262-273. · doi:10.1016/j.jneumeth.2009.11.020
[36] Shao, P.C., Tseng, W.T., Kuo, C.C., Shann, W.C., Tsai, M.L., & Yen, C.C. (2013). Effects of spike sorting error on the Granger causality index. Neural Networks, 46, 249-259. · Zbl 1296.92096 · doi:10.1016/j.neunet.2013.06.001
[37] Shimazaki, H., & Shinomoto, S. (2007). A method for selecting the bin size of a time histogram. Neural Computation, 19, 1503- 1527. · Zbl 1115.92014 · doi:10.1162/neco.2007.19.6.1503
[38] Zhou, D., Xiao, Y., Zhang, Y., Xu, Z., & Cai, D. (2014). Granger causality network reconstruction of conductance-based integrate-and-fire neuronal systems. PLoS ONE, 9, 2.
[39] Zhu, L., Lai, Y.C., Hoppensteadt, F.C., & He, J. (2003). Probing changes in neural interaction during adaptation. Neural Computation, 15, 2359-2377. · Zbl 1082.92016 · doi:10.1162/089976603322362392
[40] Zou, C., Ladroue, C., Guo, S., & Feng, J. (2010). Identifying interactions in the time and frequency domains in local and global networks - A Granger causality approach. BMC Bioinformatics, 11, 337. · doi:10.1186/1471-2105-11-337
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.