×

Stellar structure models in modified theories of gravity: lessons and challenges. (English) Zbl 1475.85010

Summary: The understanding of stellar structure represents the crossroads of our theories of the nuclear force and the gravitational interaction under the most extreme conditions observably accessible. It provides a powerful probe of the strong field regime of General Relativity, and opens fruitful avenues for the exploration of new gravitational physics. The latter can be captured via modified theories of gravity, which modify the Einstein-Hilbert action of General Relativity and/or some of its principles. These theories typically change the Tolman-Oppenheimer-Volkoff equations of stellar’s hydrostatic equilibrium, thus having a large impact on the astrophysical properties of the corresponding stars and opening a new window to constrain these theories with present and future observations of different types of stars. For relativistic stars, such as neutron stars, the uncertainty on the equation of state of matter at supranuclear densities intertwines with the new parameters coming from the modified gravity side, providing a whole new phenomenology for the typical predictions of stellar structure models, such as mass-radius relations, maximum masses, or moment of inertia. For non-relativistic stars, such as white, brown and red dwarfs, the weakening/strengthening of the gravitational force inside astrophysical bodies via the modified Newtonian (Poisson) equation may induce changes on the star’s mass, radius, central density or luminosity, having an impact, for instance, in the Chandrasekhar’s limit for white dwarfs, or in the minimum mass for stable hydrogen burning in high-mass brown dwarfs. This work aims to provide a broad overview of the main such results achieved in the recent literature for many such modified theories of gravity, by combining the results and constraints obtained from the analysis of relativistic and non-relativistic stars in different scenarios. Moreover, we will build a bridge between the efforts of the community working on different theories, formulations, types of stars, theoretical modelings, and observational aspects, highlighting some of the most promising opportunities in the field.

MSC:

85A15 Galactic and stellar structure
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81V35 Nuclear physics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Will, C. M., The confrontation between general relativity and experiment, Living Rev. Rel., 17, 4 (2014), arXiv:1403.7377 [gr-qc] · Zbl 1316.83019
[2] Bull, P., Beyond \(\Lambda\) CDM: Problems, solutions, and the road ahead, Phys. Dark Univ., 12, 56 (2016), arXiv:1512.05356 [astro-ph.CO]
[3] Barack, L., Black holes, gravitational waves and fundamental physics: a roadmap, Classical Quantum Gravity, 36, Article 143001 pp. (2019), arXiv:1806.05195 [gr-qc]
[4] Akiyama, K., First M87 event horizon telescope results. VI. The shadow and mass of the central black hole, Astrophys. J., 875, L6 (2019), arXiv:1906.11243 [astro-ph.GA]
[5] Burgess, C. P., Quantum gravity in everyday life: General relativity as an effective field theory, Living Rev. Rel., 7, 5 (2004), gr-qc/0311082 · Zbl 1070.83009
[6] Senovilla, J. M.M.; Garfinkle, D., The penrose singularity theorem, Classical Quantum Gravity, 32, 2015, Article 124008 pp. (1965), arXiv:1410.5226 [gr-qc] · Zbl 1320.83013
[7] Abbott, B. P., GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119, Article 161101 pp. (2017), arXiv:1710.05832 [gr-qc]
[8] Abbott, B. P., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J., 848, L13 (2017), arXiv:1710.05834 [astro-ph.HE]
[9] Ezquiaga, J. M.; Zumalacárregui, M., Dark energy after GW170817: Dead ends and the road ahead, Phys. Rev. Lett., 119, Article 251304 pp. (2017), arXiv:1710.05901 [astro-ph.CO]
[10] Cottam, J.; Paerels, F.; Mendez, M.; Boirin, L.; Lewin, W. H.G.; Kuulkers, E.; Miller, J. M., The burst spectra of EXO 0748-676 during a long 2003 XMM-Newton observation, Astrophys. J., 672, 504 (2008), arXiv:0709.4062 [astro-ph]
[11] Schaffner, J.; Mishustin, I. N., Hyperon rich matter in neutron stars, Phys. Rev. C, 53, 1416 (1996), nucl-th/9506011
[12] Alford, M.; Braby, M.; Paris, M. W.; Reddy, S., Hybrid stars that masquerade as neutron stars, Astrophys. J., 629, 969 (2005), nucl-th/0411016
[13] Baym, G.; Hatsuda, T.; Kojo, T.; Powell, P. D.; Song, Y.; Takatsuka, T., From hadrons to quarks in neutron stars: a review, Rep. Progr. Phys., 81, Article 056902 pp. (2018), arXiv:1707.04966 [astro-ph.HE]
[14] Alcock, C.; Farhi, E.; Olinto, A., Strange stars, Astrophys. J., 310, 261 (1986)
[15] Jetzer, P., Boson stars, Phys. Rep., 220, 163 (1992)
[16] Shapiro, S. L.; Teukolsky Black Holes, S. A., White Dwarfs and Neutron Stars: The Physics of Compact Objects (1983), John Wiley: John Wiley New York
[17] Lombardo, U.; Schulze, H. J., Superfluidity in neutron star matter, Lecture Notes in Phys., 578, 30 (2001), astro-ph/0012209
[18] Lattimer, J. M.; Prakash, M., The physics of neutron stars, Science, 304, 536 (2004), astro-ph/0405262
[19] Chatterjee, D.; Vidaña, I., Do hyperons exist in the interior of neutron stars?, Eur. Phys. J. A, 52, 29 (2016), arXiv:1510.06306 [nucl-th]
[20] Glendenning, N. K., Phase transitions and crystalline structures in neutron star cores, Phys. Rep., 342, 393 (2001)
[21] Chatziioannou, K.; Han, S., Studying strong phase transitions in neutron stars with gravitational waves, Phys. Rev. D, 101, Article 044019 pp. (2020), arXiv:1911.07091 [gr-qc]
[22] Bauswein, A.; Bastian, N. U.F.; Blaschke, D. B.; Chatziioannou, K.; Clark, J. A.; Fischer, T.; Oertel, M., Identifying a first-order phase transition in neutron star mergers through gravitational waves, Phys. Rev. Lett., 122, Article 061102 pp. (2019), arXiv:1809.01116 [astro-ph.HE]
[23] Ozel, F.; Freire, P., Masses, radii, and the equation of state of neutron stars, Ann. Rev. Astron. Astrophys., 54, 401 (2016), arXiv:1603.02698 [astro-ph.HE]
[24] Antoniadis, J., A massive pulsar in a compact relativistic binary, Science, 340, 6131 (2013), arXiv:1304.6875 [astro-ph.HE]
[25] Crawford, F.; Roberts, M. S.E.; Hessels, J. W.T.; Ransom, S. M.; Livingstone, M.; Tam, C. R.; Kaspi, V. M., A survey of 56 mid-latitude EGRET error boxes for radio pulsars, Astrophys. J., 652, 1499 (2006), astro-ph/0608225
[26] Linares, M.; Shahbaz, T.; Casares, J., Peering into the dark side: Magnesium lines establish a massive neutron star in PSR j2215+5135, Astrophys. J., 859, 54 (2018), arXiv:1805.08799 [astro-ph.HE]
[27] Cromartie, H. T., A very massive neutron star: relativistic shapiro delay measurements of PSR J0740+6620, Nature Astron., 4, 72 (2019), arXiv:1904.06759 [astro-ph.HE]
[28] Gamba, R.; Read, J. S.; Wade, L. E., The impact of the crust equation of state on the analysis of GW170817, Classical Quantum Gravity, 37, Article 025008 pp. (2020), arXiv:1902.04616 [gr-qc]
[29] Lattimer, J. M.; Schutz, B. F., Constraining the equation of state with moment of inertia measurements, Astrophys. J., 629, 979 (2005), astro-ph/0411470
[30] Ozel, F.; Freire, P., Masses, radii, and the equation of state of neutron stars, Ann. Rev. Astron. Astrophys., 54, 401 (2016), arXiv:1603.02698 [astro-ph.HE]
[31] Ekşi, K. Y.; Güngör, C.; Türkoğlu, M. M., What does a measurement of mass and/or radius of a neutron star constrain: Equation of state or gravity?, Phys. Rev. D, 89, Article 063003 pp. (2014), arXiv:1402.0488 [astro-ph.HE]
[32] Miller, M. C.; Miller, J. M., The masses and spins of neutron stars and stellar-mass black holes, Phys. Rep., 548, 1 (2014), arXiv:1408.4145 [astro-ph.HE]
[33] Psaltis, D.; Özel, F.; Chakrabarty, D., Prospects for measuring neutron-star masses and radii with x-ray pulse profile modeling, Astrophys. J., 787, 136 (2014), arXiv:1311.1571 [astro-ph.HE]
[34] Raithel, C. A.; Ozel, F.; Psaltis, D., Model-independent inference of neutron star radii from moment of inertia measurements, Phys. Rev. C. Phys. Rev. C, Phys. Rev. C, 93, Article 049905 pp. (2016), (addendum) arXiv:1603.06594 [astro-ph.HE]
[35] Abbott, B. P., GW170817: Measurements of neutron star radii and equation of state, Phys. Rev. Lett., 121, Article 161101 pp. (2018), arXiv:1805.11581 [gr-qc]
[36] Bauswein, A.; Just, O.; Janka, H. T.; Stergioulas, N., Neutron-star radius constraints from GW170817 and future detections, Astrophys. J., 850, L34 (2017), arXiv:1710.06843 [astro-ph.HE]
[37] Ruiz, M.; Shapiro, S. L.; Tsokaros, A., GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass, Phys. Rev. D, 97, Article 021501 pp. (2018), arXiv:1711.00473 [astro-ph.HE]
[38] Shibata, M.; Zhou, E.; Kiuchi, K.; Fujibayashi, S., Constraint on the maximum mass of neutron stars using GW170817 event, Phys. Rev. D, 100, Article 023015 pp. (2019), arXiv:1905.03656 [astro-ph.HE]
[39] Abbott, B. P., Properties of the binary neutron star merger GW170817, Phys. Rev. X, 9, Article 011001 pp. (2019), arXiv:1805.11579 [gr-qc]
[40] Landry, P.; Kumar, B., Constraints on the moment of inertia of PSR J0737-3039A from GW170817, Astrophys. J., 868, L22 (2018), arXiv:1807.04727 [gr-qc]
[41] Wang, Y. Z., GW170817: The energy extraction process of the off-axis relativistic outflow and the constraint on the equation of state of neutron stars, Astrophys. J., 877, 2 (2019), arXiv:1811.02558 [astro-ph.HE]
[42] Carney, M. F.; Wade, L. E.; Irwin, B. S., Comparing two models for measuring the neutron star equation of state from gravitational-wave signals, Phys. Rev. D, 98, Article 063004 pp. (2018), arXiv:1805.11217 [gr-qc]
[43] Biswas, B.; Bose, S., Tidal deformability of an anisotropic compact star: Implications of GW170817, Phys. Rev. D, 99, Article 104002 pp. (2019), arXiv:1903.04956 [gr-qc]
[44] Vivanco, F. H.; Smith, R.; Thrane, E.; Lasky, P. D.; Talbot, C.; Raymond, V., Measuring the neutron star equation of state with gravitational waves: the first forty binary neutron star mergers, Phys. Rev. D, 100, Article 103009 pp. (2019), arXiv:1909.02698 [gr-qc]
[45] Essick, R.; Landry, P.; Holz, D. E., Nonparametric inference of neutron star composition, equation of state, and maximum mass with GW170817, Phys. Rev. D, 101, Article 063007 pp. (2020), arXiv:1910.09740 [astro-ph.HE]
[46] Llanes-Estrada, F. J.; Lope-Oter, E., Hadron matter in neutron stars in view of gravitational wave observations, Prog. Part. Nucl. Phys., 109, Article 103715 pp. (2019), arXiv:1907.12760 [nucl-th]
[47] Kumar, B.; Landry, P., Inferring neutron star properties from GW170817 with universal relations, Phys. Rev. D, 99, Article 123026 pp. (2019), arXiv:1902.04557 [gr-qc]
[48] Fasano, M.; Abdelsalhin, T.; Maselli, A.; Ferrari, V., Constraining the neutron star equation of state using multi-band independent measurements of radii and tidal deformabilities, Phys. Rev. Lett., 123, Article 141101 pp. (2019), arXiv:1902.05078 [astro-ph.HE]
[49] Cottam, J.; Paerels, F.; Mendez, M., Gravitationally redshifted absorption lines in the x-ray burst spectra of a neutron star, Nature, 420, 51 (2002), astro-ph/0211126
[50] Hinderer, T., Tidal love numbers of neutron stars, Astrophys. J., 677, 1216 (2008), arXiv:0711.2420 [astro-ph]
[51] Paschalidis, V.; Yagi, K.; Alvarez-Castillo, D.; Blaschke, D. B.; Sedrakian, A., Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars, Phys. Rev. D, 97, Article 084038 pp. (2018), arXiv:1712.00451 [astro-ph.HE]
[52] Lattimer, J. M.; Prakash, M., Neutron star observations: Prognosis for equation of state constraints, Phys. Rep., 442, 109 (2007), astro-ph/0612440
[53] The Physics and Astrophysics of Neutron Stars (2018), Springer · Zbl 1414.85001
[54] Berti, E., Testing general relativity with present and future astrophysical observations, Classical Quantum Gravity, 32, Article 243001 pp. (2015), arXiv:1501.07274 [gr-qc]
[55] Shao, L., Degeneracy in studying the supranuclear equation of state and modified gravity with neutron stars, AIP Conf. Proc., 2127, Article 020016 pp. (2019), arXiv:1901.07546 [gr-qc]
[56] Chandrasekhar, S., The highly collapsed configurations of a stellar mass, Mon. Not. R. Astron. Soc., 95, 207 (1935) · Zbl 0011.08503
[57] Burrows, A.; Liebert, J., The science of brown dwarfs, Rev. Modern Phys., 65, 301 (1993)
[58] Burrows, A.; Hubbard, W. B.; Lunine, J. I.; Liebert, J., The theory of brown dwarfs and extrasolar giant planets, Rev. Modern Phys., 73, 719 (2001), astro-ph/0103383
[59] De Felice, A.; Tsujikawa, S., F(R) theories, Living Rev. Rel., 13, 3 (2010), arXiv:1002.4928 [gr-qc] · Zbl 1215.83005
[60] Sakstein, J., Astrophysical tests of screened modified gravity, Internat. J. Modern Phys. D, 27, Article 1848008 pp. (2018), arXiv:2002.04194 [astro-ph.CO]
[61] Capozziello, S.; De Laurentis, M., Extended theories of gravity, Phys. Rep., 509, 167 (2011), arXiv:1108.6266 [gr-qc]
[62] Clifton, T.; Ferreira, P. G.; Padilla, A.; Skordis, C., Modified gravity and cosmology, Phys. Rep., 513, 1 (2012), arXiv:1106.2476 [astro-ph.CO]
[63] Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K., Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution, Phys. Rep., 692, 1 (2017), arXiv:1705.11098 [gr-qc] · Zbl 1370.83084
[64] Joyce, A.; Jain, B.; Khoury, J.; Trodden, M., Beyond the cosmological standard model, Phys. Rep., 568, 1 (2015), arXiv:1407.0059 [astro-ph.CO]
[65] Beltran Jimenez, J.; Heisenberg, L.; Olmo, G. J.; Rubiera-Garcia, D., Born-Infeld inspired modifications of gravity, Phys. Rep., 727, 1 (2018), arXiv:1704.03351 [gr-qc] · Zbl 1381.83095
[66] Heisenberg, L., A systematic approach to generalisations of general relativity and their cosmological implications, Phys. Rep., 796, 1 (2019), arXiv:1807.01725 [gr-qc]
[67] Ezquiaga, J. M.; Zumalacárregui, M., Dark energy in light of multi-messenger gravitational-wave astronomy, Front. Astron. Space Sci., 5, 44 (2018), arXiv:1807.09241 [astro-ph.CO]
[68] Bejarano, C.; Delhom, A.; Jiménez-Cano, A.; Olmo, G. J.; Rubiera-Garcia, D., Geometric inequivalence of metric and palatini formulations of general relativity, Phys. Lett. B, 802, Article 135275 pp. (2020), arXiv:1907.04137 [gr-qc]
[69] Glendenning, N. K., Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (2000), Astronomy and Astrophysics Library · Zbl 0958.85001
[70] Liu, H. L.; Lü, G. L., Properties of white dwarfs in Einstein-\( \Lambda\) gravity, J. Cosmol. Astropart. Phys., 02, 040 (2019), arXiv:1805.00333 [gr-qc] · Zbl 07484853
[71] Tolman, R. C., Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev., 55, 364 (1939) · JFM 65.1048.02
[72] Oppenheimer, J. R.; Volkoff, G. M., On massive neutron cores, Phys. Rev., 55, 374 (1939) · Zbl 0020.28501
[73] Zhu, L.; Lu, J.-L.; Wang, L., Gen. Relativity Gravitation, 50, 11 (2018) · Zbl 1402.83026
[74] Carter, B.; Langlois, D., Relativistic models for superconducting superfluid mixtures, Nuclear Phys. B, 531, 478 (1998), gr-qc/9806024 · Zbl 0956.83023
[75] Kippenhahn, R.; Weigert, A.; Weiss, A., Stellar Structure and Evolution (2012), Springer · Zbl 1253.85001
[76] Herrera, L.; Santos, N. O., Local anisotropy in self-gravitating systems, Phys. Rep., 286, 53 (1997)
[77] Raposo, G.; Pani, P.; Bezares, M.; Palenzuela, C.; Cardoso, V., Anisotropic stars as ultracompact objects in general relativity, Phys. Rev. D, 99, Article 104072 pp. (2019), arXiv:1811.07917 [gr-qc]
[78] Dobado, A.; Llanes-Estrada, F. J.; Oller, J. A., Existence of two-solar-mass neutron star constrains gravitational constant \(G_N\) at strong field, Phys. Rev. C, 85, Article 012801 pp. (2012)
[79] Bombaci, I., The hyperon puzzle in neutron stars, JPS Conf. Proc., 17, Article 101002 pp. (2017), arXiv:1601.05339 [nucl-th]
[80] Rhoades, C. E.; Ruffini, R., Maximum mass of a neutron star, Phys. Rev. Lett., 32, 324 (1974)
[81] Buchdahl, H. A., General relativistic fluid spheres, Phys. Rev., 116, 1027 (1959) · Zbl 0092.20802
[82] Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (1972), John Wiley & Sons
[83] Mak, M. K.; Dobson Jr., P. N.; Harko, T., Maximum mass radius ratio for compact general relativistic objects in Schwarzschild-de Sitter geometry, Modern Phys. Lett. A, 15, 2153 (2000), gr-qc/0104031 · Zbl 1010.83024
[84] Andreasson, H.; Boehmer, C. G.; Mussa, A., Bounds on M/R for charged objects with positive cosmological constant, Classical Quantum Gravity, 29, Article 095012 pp. (2012), arXiv:1201.5725 [gr-qc] · Zbl 1246.83086
[85] Urbano, A.; Veermäe, H., On gravitational echoes from ultracompact exotic stars, J. Cosmol. Astropart. Phys., 04, 011 (2019), arXiv:1810.07137 [gr-qc] · Zbl 07486869
[86] Tsuchida, T.; Kawamura, G.; Watanabe, K., A maximum mass-to-size ratio in scalar tensor theories of gravity, Progr. Theoret. Phys., 100, 291 (1998), gr-qc/9802049
[87] Dadhich, N.; Chakraborty, S., Buchdahl compactness limit for a pure lovelock static fluid star, Phys. Rev. D, 95, Article 064059 pp. (2017), arXiv:1606.01330 [gr-qc]
[88] Chandrasekhar, S., Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity, Phys. Rev. Lett., 12, 437 (1964) · Zbl 0151.47102
[89] Sagert, I.; Hempel, M.; Greiner, C.; Schaffner-Bielich, J., Compact stars for undergraduates, Eur. J. Phys., 27, 577 (2006), astro-ph/0506417
[90] Olmo, G. J., Limit to general relativity in f(R) theories of gravity, Phys. Rev. D, 75, Article 023511 pp. (2007), gr-qc/0612047
[91] Fujii, Y.; Maeda, K.-i., The Scalar-Tensor Theory of Gravitation, Cambridge Monographs on Mathematical Physics (2003), Cambridge University Press · Zbl 1079.83023
[92] Brax, P.; Davis, A. C.; Jha, R., Neutron stars in screened modified gravity: Chameleon vs Dilaton, Phys. Rev. D, 95, Article 083514 pp. (2017), arXiv:1702.02983 [gr-qc]
[93] Zhang, X.; Liu, T.; Zhao, W., Gravitational radiation from compact binary systems in screened modified gravity, Phys. Rev. D, 95, Article 104027 pp. (2017), arXiv:1702.08752 [gr-qc]
[94] Vainshtein, A. I., To the problem of nonvanishing gravitation mass, Phys. Lett. B, 39, 393 (1972)
[95] Flanagan, E. E., The conformal frame freedom in theories of gravitation, Classical Quantum Gravity, 21, 3817 (2004), gr-qc/0403063 · Zbl 1070.83023
[96] Damour, T.; Esposito-Farese, G., Tensor multiscalar theories of gravitation, Classical Quantum Gravity, 9, 2093 (1992) · Zbl 0780.53054
[97] Aparicio Resco, M.; de la Cruz-Dombriz, A.; Llanes Estrada, F. J.; Zapatero Castrillo, V., On neutron stars in \(f ( R )\) theories: Small radii, large masses and large energy emitted in a merger, Phys. Dark Univ., 13, 147 (2016), arXiv:1602.03880 [gr-qc]
[98] Silva, H. O.; Yunes, N., Neutron star pulse profiles in scalar-tensor theories of gravity, Phys. Rev. D, 99, Article 044034 pp. (2019), arXiv:1808.04391 [gr-qc]
[99] Horbatsch, M. W.; Burgess, C. P., Model-independent comparisons of pulsar timings to scalar-tensor gravity, Classical Quantum Gravity, 29, Article 245004 pp. (2012), arXiv:1107.3585 [gr-qc] · Zbl 1260.83078
[100] Will, C. M., Theory and Experiment in Gravitational Physic (2018), Cambridge University Press · Zbl 1400.53076
[101] Will, C. M.; Nordtvedt Jr., K., Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an extended PPN formalism, Astrophys. J., 177, 757 (1972)
[102] Sotiriou, T. P.; Faraoni, V., F(R) theories of gravity, Rev. Modern Phys., 82, 451 (2010), arXiv:0805.1726 [gr-qc] · Zbl 1205.83006
[103] Capozziello, S.; Troisi, A., PPN-limit of fourth order gravity inspired by scalar-tensor gravity, Phys. Rev. D, 72, Article 044022 pp. (2005), astro-ph/0507545
[104] Chiba, T., \( 1 / R\) gravity and scalar-tensor gravity, Phys. Lett. B, 575, 1 (2003), arXiv:astro-ph/0307338 · Zbl 1029.83503
[105] Carroll, S. M.; Duvvuri, V.; Trodden, M.; Turner, M. S., Is cosmic speed - up due to new gravitational physics?, Phys. Rev. D, 70, Article 043528 pp. (2004), arXiv:astro-ph/0306438
[106] Erickcek, A. L.; Smith, T. L.; Kamionkowski, M., Solar system tests do rule out 1/R gravity, Phys. Rev. D, 74, Article 121501 pp. (2006), arXiv:astro-ph/0610483
[107] Bertotti, B.; Iess, L.; Tortora, P., A test of general relativity using radio links with the Cassini spacecraft, Nature, 425, 374 (2003)
[108] Suvorov, A. G., Monopolar and quadrupolar gravitational radiation from magnetically deformed neutron stars in modified gravity, Phys. Rev. D, 98, Article 084026 pp. (2018), arXiv:1810.02975 [astro-ph.HE]
[109] Abbott, B. P., First search for gravitational waves from known pulsars with advanced LIGO, Astrophys. J.. Astrophys. J., Astrophys. J., 851, 71 (2017), (erratum) arXiv:1701.07709 [astro-ph.HE]
[110] Kainulainen, K.; Piilonen, J.; Reijonen, V.; Sunhede, D., Spherically symmetric spacetimes in f(R) gravity theories, Phys. Rev. D, 76, Article 024020 pp. (2007), arXiv:0704.2729 [gr-qc] · Zbl 1222.83143
[111] Zhang, P. J., The behavior of f(R) gravity in the solar system, galaxies and clusters, Phys. Rev. D, 76, Article 024007 pp. (2007), astro-ph/0701662
[112] Glampedakis, K.; Pappas, G.; Silva, H. O.; Berti, E., Post-Tolman-Oppenheimer-Volkoff formalism for relativistic stars, Phys. Rev. D, 92, Article 024056 pp. (2015), arXiv:1504.02455 [gr-qc]
[113] Chiba, T.; Smith, T. L.; Erickcek, A. L., Solar system constraints to general f(R) gravity, Phys. Rev. D, 75, Article 124014 pp. (2007), arXiv:astro-ph/0611867 [astro-ph]
[114] Nojiri, S.; Odintsov, S. D., Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration, Phys. Rev. D, 68, Article 123512 pp. (2003), arXiv:hep-th/0307288 [hep-th]
[115] Faulkner, T.; Tegmark, M.; Bunn, E. F.; Mao, Y., Constraining f(R) gravity as a scalar tensor theory, Phys. Rev. D, 76, Article 063505 pp. (2007), astro-ph/0612569
[116] Multamaki, T.; Vilja, I., Phys. Rev. D, 76, Article 064021 pp. (2007), arXiv:astro-ph/0612775
[117] Henttunen, K.; Multamaki, T.; Vilja, I., Stellar configurations in f (R) theories of gravity, Phys. Rev. D, 77, Article 024040 pp. (2008), arXiv:0705.2683 [astro-ph]
[118] Horedt, G. P., Polytropes: Applications in Astrophysics and Related Fields (2004), Springer
[119] Kippenhahn, R.; Weigert, A., Stellar Structure and Evolution, Astronomy and Astrophysics Library (1990), Springer: Springer New York · Zbl 1254.85001
[120] Cikintoglu, S., Vacuum solutions around spherically symmetric and static objects in the Starobinsky model, Phys. Rev. D, 97, Article 044040 pp. (2018), arXiv:1708.00345 [gr-qc]
[121] Astashenok, A. V.; Mosani, K.; Odintsov, S. D.; Samanta, G. C., Gravitational collapse in general relativity and in \(R^2\)-gravity: A comparative study, Int. J. Geom. Methods Mod. Phys., 16, Article 1950035 pp. (2019), arXiv:1812.10441 [gr-qc] · Zbl 1426.83023
[122] Goswami, R.; Nzioki, A. M.; Maharaj, S. D.; Ghosh, S. G., Collapsing spherical stars in f(R) gravity, Phys. Rev. D, 90, Article 084011 pp. (2014), arXiv:1409.2371 [gr-qc]
[123] Oppenheimer, J. R.; Snyder, H., On continued gravitational contraction, Phys. Rev., 56, 455 (1939) · Zbl 0022.28104
[124] Datt, B., Z. Phys.. Z. Phys., Gen. Relativity Gravitation, 31, 1615 (1999), reprinted as · Zbl 0955.83042
[125] Hansen, C. J.; Kawaler, S. D.; Trimble, V., Stellar Interiors - Physical Principles, Structure, and Evolution (1994), A & A Library, Spinger-Verlag, New York
[126] Capozziello, S.; De Laurentis, M.; Odintsov, S. D.; Stabile, A., Hydrostatic equilibrium and stellar structure in \(f ( R )\)-gravity, Phys. Rev. D, 83, Article 064004 pp. (2011), arXiv:1101.0219 [gr-qc]
[127] Farinelli, R.; De Laurentis, M.; Capozziello, S.; Odintsov, S. D., Numerical solutions of the modified Lane-Emden equation in \(f ( R )\)-gravity, Mon. Not. R. Astron. Soc., 440, 2909 (2014), arXiv:1311.2744 [astro-ph.SR]
[128] André, R.; Kremer, G. M., Stellar structure model in hydrostatic equilibrium in the context of \(f ( \mathcal{R} )\)-gravity, Res. Astron. Astrophys., 17, 122 (2017), arXiv:1707.07675 [gr-qc]
[129] Naf, J.; Jetzer, P., On the 1/c expansion of f(R) gravity, Phys. Rev. D, 81, Article 104003 pp. (2010), arXiv:1004.2014 [gr-qc]
[130] Rebolo, R.; Martin, E. L.; Basri, G.; Marcy, G. W.; Osorio, M. R.Z., Brown dwarfs in the Pleiades cluster confirmed by the lithium test, Astrophys. J., 469, L53 (1996), arXiv:astro-ph/9607002
[131] Ohnaka, K., Spatially resolved, high-spectral resolution observation of the K giant Aldebaran in the CO first overtone lines with VLTI/AMBER, Astron. Astrophys., 553, A3 (2013), arXiv:1303.4763 [astro-ph.SR]
[132] Tsuji, T., Cool luminous stars: the hybrid nature of their infrared spectra, Astron. Astrophys., 489, 1271 (2008), arXiv:0807.4387 [astro-ph]
[133] Richichi, A.; Roccatagliata, V., Aldebaran’s angular diameter: How well do we know it?, Astron. Astrophys., 433, 305 (2005), astro-ph/0502181
[134] Holberg, J. B.; Barstow, M. A.; Bruhweiler, F. C.; Cruise, A. M.; Penny, A. J., Sirius B: A new, more accurate view, Astrophys. J., 497, 935 (1998)
[135] Zhao, X. F., The properties of the massive neutron star PSR J0348+0432, Internat. J. Modern Phys. D, 24, Article 1550058 pp. (2015), arXiv:1712.08860 [nucl-th]
[136] Horndeski, G. W., Second-order scalar-tensor field equations in a four-dimensional space, Internat. J. Theoret. Phys., 10, 363 (1974)
[137] Langlois, D.; Noui, K., Degenerate higher derivative theories beyond horndeski: evading the Ostrogradski instability, J. Cosmol. Astropart. Phys., 1602, 034 (2016), arXiv:1510.06930 [gr-qc]
[138] Zumalacárregui, M.; García-Bellido, J., Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian, Phys. Rev. D, 89, Article 064046 pp. (2014), arXiv:1308.4685 [gr-qc]
[139] Gleyzes, J.; Langlois, D.; Piazza, F.; Vernizzi, F., Healthy theories beyond Horndeski, Phys. Rev. Lett., 114, Article 211101 pp. (2015), arXiv:1404.6495 [hep-th]
[140] Gleyzes, J.; Langlois, D.; Piazza, F.; Vernizzi, F., Exploring gravitational theories beyond Horndeski, J. Cosmol. Astropart. Phys., 1502, 018 (2015), arXiv:1408.1952 [astro-ph.CO]
[141] Koyama, K.; Niz, G.; Tasinato, G., Effective theory for the Vainshtein mechanism from the Horndeski action, Phys. Rev. D, 88, Article 021502 pp. (2013), arXiv:1305.0279 [hep-th]
[142] De Felice, A.; Kase, R.; Tsujikawa, S., Vainshtein mechanism in second-order scalar-tensor theories, Phys. Rev. D, 85, Article 044059 pp. (2012), arXiv:1111.5090 [gr-qc]
[143] Deffayet, C.; Esposito-Farese, G.; Vikman, A., Covariant galileon, Phys. Rev. D, 79, Article 084003 pp. (2009), arXiv:0901.1314 [hep-th]
[144] Koyama, K.; Sakstein, J., Astrophysical probes of the Vainshtein mechanism: Stars and galaxies, Phys. Rev. D, 91, Article 124066 pp. (2015), arXiv:1502.06872 [astro-ph.CO] · Zbl 1329.83165
[145] Kobayashi, T.; Watanabe, Y.; Yamauchi, D., Breaking of Vainshtein screening in scalar-tensor theories beyond Horndeski, Phys. Rev. D, 91, Article 064013 pp. (2015), arXiv:1411.4130 [gr-qc]
[146] Saito, R.; Yamauchi, D.; Mizuno, S.; Gleyzes, J.; Langlois, D., Modified gravity inside astrophysical bodies, J. Cosmol. Astropart. Phys., 1506, 008 (2015), arXiv:1503.01448 [gr-qc]
[147] Wibisono, C.; Sulaksono, A., Information-entropic method for studying the stability bound of nonrelativistic polytropic stars within modified gravity theories, Internat. J. Modern Phys. D, 27, Article 1850051 pp. (2018), arXiv:1712.07587 [gr-qc]
[148] Sakstein, J., Hydrogen burning in low mass stars constrains scalar-tensor theories of gravity, Phys. Rev. Lett., 115, Article 201101 pp. (2015), arXiv:1510.05964 [astro-ph.CO]
[149] Paxton, B.; Bildsten, L.; Dotter, A.; Herwig, F.; Lesaffre, P.; Timmes, F., Modules for experiments in stellar astrophysics (MESA), Astrophys. J. Suppl., 192, 3 (2011), arXiv:1009.1622 [astro-ph.SR]
[150] Jain, R. K.; Kouvaris, C.; Nielsen, N. G., White dwarf critical tests for modified gravity, Phys. Rev. Lett., 116, Article 151103 pp. (2016), arXiv:1512.05946 [astro-ph.CO]
[151] Saltas, I. D.; Sawicki, I.; Lopes, I., White dwarfs and revelations, J. Cosmol. Astropart. Phys., 1805, 028 (2018), arXiv:1803.00541 [astro-ph.CO]
[152] Koester, D.; Chanmugam, G., REVIEW: Physics of white dwarf stars, Rep. Progr. Phys., 53, 837 (1990)
[153] Salpeter, E. E., Energy and pressure of a zero-temperature plasma, Astrophys. J., 134, 669 (1961)
[154] Parsons, S. G., Testing the white dwarf mass-radius relationship with eclipsing binaries, Mon. Not. R. Astron. Soc., 470, 4473 (2017), arXiv:1706.05016 [astro-ph.SR]
[155] Babichev, E.; Koyama, K.; Langlois, D.; Saito, R.; Sakstein, J., Relativistic stars in beyond Horndeski theories, Classical Quantum Gravity, 33, Article 235014 pp. (2016), arXiv:1606.06627 [gr-qc] · Zbl 1354.85005
[156] S. Chowdhury, T. Sarkar, Small anisotropy in stellar objects in modified theories of gravity, arXiv:1811.07685 [astro-ph.SR].
[157] Heintzmann, H.; Hillebrandt, W., Neutron stars with an anisotropic equation of state - Mass, redshift and stability, Astron. Astrophys., 38, 55 (1975)
[158] Cermeno, M.; Carro, J.; Maroto, A. L.; Perez-Garcia, M. A., Modified gravity at astrophysical scales, Astrophys. J., 872, 130 (2019), arXiv:1811.11171 [astro-ph.SR]
[159] Hachisu, I.; Kato, M., A theoretical light-curve model for the recurrent nova v394 coronae austrinae, Astrophys. J., 540, 447 (2000), astro-ph/0003471
[160] Banerjee, S.; Shankar, S.; Singh, T. P., Constraints on modified gravity models from white dwarfs, J. Cosmol. Astropart. Phys., 1710, 004 (2017), arXiv:1705.01048 [gr-qc]
[161] Stelle, K. S., Classical gravity with higher derivatives, Gen. Relativity Gravitation, 9, 353 (1978)
[162] Moffat, J. W., Scalar-tensor-vector gravity theory, J. Cosmol. Astropart. Phys., 0603, 004 (2006), gr-qc/0506021 · Zbl 1236.83047
[163] Sun, X.; Zhou, S. Y., Relativistic stars in mass-varying massive gravity, Phys. Rev. D, 101, Article 044060 pp. (2020), arXiv:1912.00685 [gr-qc]
[164] S. Kalita, B. Mukhopadhyay, T.R. Govindarajan, Violation of Chandrasekhar mass-limit in noncommutative geometry: A strong possible explanation for the super-Chandrasekhar limiting mass white dwarfs, arXiv:1912.00900 [gr-qc].
[165] Howell, D. A., The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star, Nature, 443, 308 (2006), astro-ph/0609616
[166] Holberg, J. B.; Oswalt, T. D.; Barstow, M. A., Observational constraints on the degenerate mass-radius relation, Astron. J., 143, 68 (2012), arXiv:1201.3822 [astro-ph.SR]
[167] Carvalho, G. A.; Lobato, R. V.; Moraes, P. H.R. S.; Arbañil, J. D.V.; Marinho, R. M.; Otoniel, E.; Malheiro, M., Stellar equilibrium configurations of white dwarfs in the f(R, T) gravity, Eur. Phys. J. C, 77, 871 (2017), arXiv:1706.03596 [gr-qc]
[168] Vennes, S.; Thejll, P. A.; Galvan, R. G.; Dupuis, J., Hot white dwarfs in the extreme ultraviolet explorer survey. II. Mass distribution, space density, and population age, Astrophys. J., 480, 714 (1997)
[169] Crisostomi, M.; Lewandowski, M.; Vernizzi, F., Vainshtein regime in scalar-tensor gravity: constraints on DHOST theories, Phys. Rev. D, 100, Article 024025 pp. (2019), arXiv:1903.11591 [gr-qc]
[170] Garay, L. J., Quantum gravity and minimum length, Internat. J. Modern Phys. A, 10, 145 (1995), gr-qc/9403008
[171] Rashidi, R., Generalized uncertainty principle and the maximum mass of ideal white dwarfs, Ann. Physics, 374, 434 (2016), arXiv:1512.06356 [gr-qc]
[172] Ong, Y. C.; Yao, Y., Generalized uncertainty principle and white dwarfs redux: How cosmological constant protects Chandrasekhar limit, Phys. Rev. D, 98, Article 126018 pp. (2018), arXiv:1809.06348 [gr-qc]
[173] Mathew, A.; Nandy, M. K., Effect of minimal length uncertainty on the mass-radius relation of white dwarfs, Ann. Physics, 393, 184 (2018), arXiv:1712.03953 [gr-qc]
[174] A. Mathew, M.K. Nandy, Existence of Chandrasekhar’s limit in GUP white dwarfs, arXiv:2002.08360 [gr-qc].
[175] Maciel, W. J., Energy production, (Introduction To Stellar Structure (2016), Springer)
[176] Sakstein, J., Testing gravity using dwarf stars, Phys. Rev. D, 92, Article 124045 pp. (2015), arXiv:1511.01685 [astro-ph.CO]
[177] Auddy, S.; Basu, S.; Valluri, S. R., Analytic models of brown dwarfs and the substellar mass limit, Adv. Astron., 2016, Article 5743272 pp. (2016)
[178] Kumar, S. S., The structure of stars of very low mass, Agron. J., 137, 1121 (1963)
[179] Segransan, D.; Delfosse, X.; Forveille, T.; Beuzit, J.-L.; Udry, S.; Perrier, C.; Mayor, M., Accurate masses of very low mass stars. 3. 16 new or improved masses, Astron. Astrophys., 364, 665 (2000), arXiv:astro-ph/0010585
[180] Spiegel, D. S.; Burrows, A.; Milsom, J. A., The deuterium-burning mass limit for brown dwarfs and giant planets, Astrophys. J., 727, 57 (2011), arXiv:1008.5150 [astro-ph.EP]
[181] Rosyadi, A.; Sulaksono, A.; Kassim, H.; Yusof, N., Brown dwarfs in Eddington-inspired Born-Infeld and beyond Horndeski theories, Eur. Phys. J. C, 79, 1030 (2019)
[182] Bayliss, D., Astrophys. J, 153, 1 (2016)
[183] Saumon, D.; Hubbard, W. B.; Burrows, A.; Guillot, T.; Lunine, J. I.; Chabrier, G., A theory of extrasolar giant planets, Astrophys. J., 460, 993 (1996), arXiv:astro-ph/9510046
[184] Brown, A. G.A., Gaia Data Release 2 : Summary of the contents and survey properties, Astron. Astrophys., 616, A1 (2018), arXiv:1804.09365 [astro-ph.GA]
[185] Sakstein, J.; Kenna-Allison, M.; Koyama, K., Stellar pulsations in beyond horndeski gravity theories, J. Cosmol. Astropart. Phys., 1703, 007 (2017), arXiv:1611.01062 [gr-qc]
[186] Sakstein, J., Stellar oscillations in modified gravity, Phys. Rev. D, 88, Article 124013 pp. (2013), arXiv:1309.0495 [astro-ph.CO]
[187] Sakstein, J.; Jain, B.; Vikram, V., Detecting modified gravity in the stars, Internat. J. Modern Phys. D, 23, Article 1442002 pp. (2014), arXiv:1409.3708 [astro-ph.CO]
[188] Chang, P.; Hui, L., Stellar structure and tests of modified gravity, Astrophys. J., 732, 25 (2011), arXiv:1011.4107 [astro-ph.CO]
[189] Bauswein, A.; Baumgarte, T. W.; Janka, H.-T., Prompt merger collapse and the maximum mass of neutron stars, Phys. Rev. Lett., 111, Article 131101 pp. (2013), arXiv:1307.5191 [astro-ph.SR]
[190] Annala, E.; Gorda, T.; Kurkela, A.; Vuorinen, A., Gravitational-wave constraints on the neutron-star-matter equation of state, Phys. Rev. Lett., 120, Article 172703 pp. (2018), arXiv:1711.02644 [astro-ph.HE]
[191] Radice, D.; Perego, A.; Zappa, F.; Bernuzzi, S., GW170817: Joint constraint on the neutron star equation of state from multimessenger observations, Astrophys. J., 852, L29 (2018), arXiv:1711.03647 [astro-ph.HE]
[192] Glendenning, N. K.; Moszkowski, S. A., Reconciliation of neutron-star masses and binding of the \(\Lambda\) in hypernuclei, Phys. Rev. Lett., 67, 2414 (1991)
[193] Pandharipande, V. R.; Ravenhall, D. G., (Soyeur, M.; Flocard, H.; Tamain, B.; Porneuf, M., Hot Nuclear Matter in Nuclear Matter and Heavy Ion Collisions (1989), Reidel: Reidel Dordrecht), Article 103132 pp.
[194] Friedman, B.; Pandharipande, V. R., Hot and cold, nuclear and neutron matter, Nuclear Phys. A, 361, 502 (1981)
[195] Lorenz, C. P.; Ravenhall, D. G.; Pethick, C. J., Neutron star crusts, Phys. Rev. Lett., 70, 379 (1993)
[196] Read, J. S.; Lackey, B. D.; Owen, B. J.; Friedman, J. L., Constraints on a phenomenologically parameterized neutron-star equation of state, Phys. Rev. D, 79, Article 124032 pp. (2009), arXiv:0812.2163 [astro-ph]
[197] Demorest, P.; Pennucci, T.; Ransom, S.; Roberts, M.; Hessels, J., Shapiro delay measurement of a two solar mass neutron star, Nature, 467, 1081 (2010), arXiv:1010.5788 [astro-ph.HE]
[198] Chabanat, E.; Bonche, P.; Haensel, P.; Meyer, J.; Schaeffer, R., A skyrme parametrization from subnuclear to neutron star densities. 2. Nuclei far from stablities, Nuclear Phys. A. Nuclear Phys. A, Nuclear Phys. A, 643, 441 (1998), (erratum)
[199] Douchin, F.; Haensel, P., Inner edge of neutron star crust with SLY effective nucleon-nucleon interactions, Phys. Lett. B, 485, 107 (2000), arXiv:astro-ph/0006135
[200] Douchin, F.; Haensel, P., A unified equation of state of dense matter and neutron star structure, Astron. Astrophys., 380, 151 (2001), arXiv:astro-ph/0111092
[201] Haensel, P.; Potekhin, A. Y., Analytical representations of unified equations of state of neutron-star matter, Astron. Astrophys., 428, 191 (2004), arXiv:astro-ph/0408324 · Zbl 1065.85005
[202] Camenzind, M., Compact Objects in Astrophysics (2007), Springer
[203] Lattimer, J., The nuclear equation of state and neutron star masses, Annu. Rev. Nucl. Part. Sci., 62, 485 (2012)
[204] Akmal, A.; Pandharipande, V. R.; Ravenhall, D. G., The equation of state of nucleon matter and neutron star structure, Phys. Rev. C, 58, 1804 (1998), arXiv:nucl-th/9804027
[205] Wiringa, R. B.; Fiks, V.; Fabrocini, A., Equation of state for dense nucleon matter, Phys. Rev. C, 38, 1010 (1988)
[206] Goriely, S.; Chamel, N.; Pearson, J. M., Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII: Stiffness and stability of neutron-star matter, Phys. Rev. C, 82, Article 035804 pp. (2010), arXiv:1009.3840 [nucl-th]
[207] Chamel, N.; Fantina, A. F.; Pearson, J. M.; Goriely, S., Masses of neutron stars and nuclei, Phys. Rev. C, 84, Article 062802 pp. (2011), arXiv:1112.2878 [nucl-th]
[208] Potekhin, A. Y.; Fantina, A. F.; Chamel, N.; Pearson, J. M.; Goriely, S., Analytical representations of unified equations of state for neutron-star matter, Astron. Astrophys., 560, A48 (2013), arXiv:1310.0049 [astro-ph.SR]
[209] Oertel, M.; Providência, C.; Gulminelli, F.; Raduta, A. R., Hyperons in neutron star matter within relativistic mean-field models, J. Phys. G, 42, Article 075202 pp. (2015), arXiv:1412.4545 [nucl-th]
[210] Muther, H.; Prakash, M.; Ainsworth, T. L., The equation of state of nuclear matter and neutron stars properties, Phys. Lett. B, 199, 469 (1987)
[211] C. Gungor, K.Y. Eksi, Analytical Representation for Equations of State of Dense Matter, arXiv:1108.2166 [astro-ph.SR].
[212] Mueller, H.; Serot, B. D., Relativistic mean field theory and the high density nuclear equation of state, Nuclear Phys. A, 606, 508 (1996), arXiv:nucl-th/9603037
[213] Jaffe, R. L.; Low, F. E., Phys. Rev. D., 19, 2105 (1979)
[214] Bonanno, L.; Sedrakian, A., Composition and stability of hybrid stars with hyperons and quark color-superconductivity, Astron. Astrophys., 539, A16 (2012), arXiv:1108.0559 [astro-ph.SR]
[215] Lattimer, J. M., The nuclear equation of state and neutron star masses, Ann. Rev. Nucl. Part. Sci., 62, 485 (2012), arXiv:1305.3510 [nucl-th]
[216] Read, J. S.; Lackey, B. D.; Owen, B. J.; Friedman, J. L., Constraints on a phenomenologically parameterized neutron-star equation of state, Phys. Rev. D, 79, Article 124032 pp. (2009), arXiv:0812.2163 [astro-ph]
[217] Yagi, K.; Yunes, N., Approximate universal relations for neutron stars and quark stars, Phys. Rep., 681, 1 (2017), arXiv:1608.02582 [gr-qc] · Zbl 1366.85002
[218] Breu, C.; Rezzolla, L.; mass, Maximum., Maximum mass moment of inertia and compactness of relativistic stars, Mon. Not. R. Astron. Soc., 459, 646 (2016), arXiv:1601.06083 [gr-qc]
[219] Oter, E. L.; Windisch, A.; Llanes-Estrada, F. J.; Alford, M., nEoS: Neutron star equation of state from hadron physics alone, J. Phys. G, 46, Article 084001 pp. (2019), arXiv:1901.05271 [gr-qc]
[220] Damour, T.; Esposito-Farese, G., Nonperturbative strong field effects in tensor - scalar theories of gravitation, Phys. Rev. Lett., 70, 2220 (1993)
[221] Podkowka, D. M.; Mendes, R. F.P.; Poisson, E., Trace of the energy-momentum tensor and macroscopic properties of neutron stars, Phys. Rev. D, 98, Article 064057 pp. (2018), arXiv:1807.01565 [gr-qc]
[222] Cooney, A.; DeDeo, S.; Psaltis, D., Neutron stars in f(R) gravity with perturbative constraints, Phys. Rev. D, 82, Article 064033 pp. (2010), arXiv:0910.5480 [astro-ph.HE]
[223] Orellana, M.; Garcia, F.; Teppa Pannia, F. A.; Romero, G. E., Structure of neutron stars in \(R\)-squared gravity, Gen. Relativity Gravitation, 45, 771 (2013), arXiv:1301.5189 [astro-ph.CO] · Zbl 1266.83151
[224] Chatterjee, D.; Novak, J.; Oertel, M., Magnetic field distribution in magnetars, Phys. Rev. C, 99, Article 055811 pp. (2019), arXiv:1808.01778 [nucl-th]
[225] Ryu, C. Y.; Kim, K. S.; Cheoun, M. K., Medium effects of magnetic moments of baryons on neutron stars under strong magnetic fields, Phys. Rev. C, 82, Article 025804 pp. (2010)
[226] Cheoun, M. K.; Deliduman, C.; Güngör, C.; Keleş, V.; Ryu, C. Y.; Kajino, T.; Mathews, G. J., Neutron stars in a perturbative \(f ( R )\) gravity model with strong magnetic fields, J. Cosmol. Astropart. Phys., 1310, 021 (2013), arXiv:1304.1871 [astro-ph.HE]
[227] Yazadjiev, S. S.; Doneva, D. D.; Kokkotas, K. D.; Staykov, K. V., Non-perturbative and self-consistent models of neutron stars in R-squared gravity, J. Cosmol. Astropart. Phys., 1406, 003 (2014), arXiv:1402.4469 [gr-qc]
[228] Arapoglu, A. S.; Deliduman, C.; Eksi, K. Y., Constraints on perturbative f(R) gravity via neutron stars, J. Cosmol. Astropart. Phys., 1107, 020 (2011), arXiv:1003.3179 [gr-qc]
[229] Hebeler, K.; Lattimer, J. M.; Pethick, C. J.; Schwenk, A., Equation of state and neutron star properties constrained by nuclear physics and observation, Astrophys. J., 773, 11 (2013), arXiv:1303.4662 [astro-ph.SR]
[230] Astashenok, A. V.; Odintsov, S. D.; de la Cruz-Dombriz, A., The realistic models of relativistic stars in \(f ( R ) = R + \alpha R^2\) gravity, Classical Quantum Gravity, 34, Article 205008 pp. (2017), arXiv:1704.08311 [gr-qc] · Zbl 1380.85003
[231] Sbisà, F.; Baqui, P. O.; Miranda, T.; Jorás, S. E.; Piattella, O. F., Neutron star masses in \(R^2\)-gravity, Phys. Dark Univ. C, 27, Article 100411 pp. (2020), arXiv:1907.08714 [gr-qc]
[232] Astashenok, A. V.; Baigashov, A. S.; Lapin, S. A., Neutron stars in frames of \(R^2\)-gravity and gravitational waves, Int. J. Geom. Methods Mod. Phys., 16, Article 19500044 pp. (2018), arXiv:1812.10439 [gr-qc] · Zbl 1408.83034
[233] Miyatsu, T.; Yamamuro, S.; Nakazato, K., A new equation of state for neutron star matter with nuclei in the crust and hyperons in the core, Astrophys. J., 777, 4 (2013), arXiv:1308.6121 [astro-ph.HE]
[234] Mansour, H.; Lakhal, B. S.; Yanallah, A., Weakly charged compact stars in \(f ( R )\) gravity, J. Cosmol. Astropart. Phys., 1806, 006 (2018), arXiv:1710.09294 [gr-qc]
[235] Arbañil, J. D.V.; Lemos, J. P.S.; Zanchin, V. T., Polytropic spheres with electric charge: compact stars, the Oppenheimer-Volkoff and Buchdahl limits, and quasiblack holes, Phys. Rev. D, 88, Article 084023 pp. (2013), arXiv:1309.4470 [gr-qc]
[236] Folomeev, V., Anisotropic neutron stars in \(R^2\) gravity, Phys. Rev. D, 97, Article 124009 pp. (2018), arXiv:1802.01801 [gr-qc]
[237] Horvat, D.; Ilijic, S.; Marunovic, A., Radial pulsations and stability of anisotropic stars with quasi-local equation of state, Classical Quantum Gravity, 28, Article 025009 pp. (2011), arXiv:1010.0878 [gr-qc] · Zbl 1207.85008
[238] Bowers, R. L.; Liang, E. P.T., Anisotropic spheres in general relativity, Astrophys. J., 188, 657 (1974)
[239] Feola, P.; Forteza, X. J.; Capozziello, S.; Cianci, R.; Vignolo, S., The mass-radius relation for neutron stars in \(f ( R ) = R + \alpha R^2\) gravity: a comparison between purely metric and torsion formulations, Phys. Rev. D, 101, Article 044037 pp. (2020), arXiv:1909.08847 [astro-ph.HE]
[240] Astashenok, A. V.; Capozziello, S.; Odintsov, S. D., Further stable neutron star models from f(r) gravity, J. Cosmol. Astropart. Phys., 1312, 040 (2013), arXiv:1309.1978 [gr-qc]
[241] Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S. D.; Sebastiani, L.; Zerbini, S., A class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion, Phys. Rev. D, 77, Article 046009 pp. (2008), arXiv:0712.4017 [hep-th]
[242] Camenzind, M., Compact Objects in Astrophysics (2007), Springer
[243] Alavirad, H.; Weller, J. M., Modified gravity with logarithmic curvature corrections and the structure of relativistic stars, Phys. Rev. D, 88, Article 124034 pp. (2013), arXiv:1307.7977 [gr-qc]
[244] Capozziello, S.; De Laurentis, M.; Farinelli, R.; Odintsov, S. D., Mass-radius relation for neutron stars in f(R) gravity, Phys. Rev. D, 93, Article 023501 pp. (2016), arXiv:1509.04163 [gr-qc]
[245] Astashenok, A. V.; Capozziello, S.; Odintsov, S. D., Maximal neutron star mass and the resolution of the hyperon puzzle in modified gravity, Phys. Rev. D, 89, Article 103509 pp. (2014), arXiv:1401.4546 [gr-qc]
[246] Astashenok, A. V.; Capozziello, S.; Odintsov, S. D., Magnetic neutron stars in f(R) gravity, Astrophys. Space Sci., 355, 333 (2015), arXiv:1405.6663 [gr-qc]
[247] Astashenok, A. V.; Capozziello, S.; Odintsov, S. D., Extreme neutron stars from extended theories of gravity, J. Cosmol. Astropart. Phys., 1501, 001 (2015), arXiv:1408.3856 [gr-qc]
[248] Clifton, T.; Barrow, J. D., The power of general relativity, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 90, 029902 (2014), (erratum). arXiv:gr-qc/0509059
[249] De Laurentis, M., Noether’s stars in \(f ( \mathcal{R} )\) gravity, Phys. Lett. B, 780, 205 (2018), arXiv:1802.09073 [gr-qc] · Zbl 1390.83301
[250] Hu, W.; Sawicki, I., Models of f(R) cosmic acceleration that evade solar-system tests, Phys. Rev. D, 76, Article 064004 pp. (2007), arXiv:0705.1158 [astro-ph]
[251] Tsujikawa, S., Observational signatures of f(R) dark energy models that satisfy cosmological and local gravity constraints, Phys. Rev. D, 77, Article 023507 pp. (2008), arXiv:0709.1391 [astro-ph]
[252] Kase, R.; Tsujikawa, S., Neutron stars in \(f ( R )\) gravity and scalar-tensor theories, J. Cosmol. Astropart. Phys., 1909, 054 (2019), arXiv:1906.08954 [gr-qc] · Zbl 07483203
[253] Horbatsch, M. W.; Burgess, C. P., Semi-analytic stellar structure in scalar-tensor gravity, J. Cosmol. Astropart. Phys., 1108, 027 (2011), arXiv:1006.4411 [gr-qc]
[254] Cisterna, A.; Delsate, T.; Rinaldi, M., Neutron stars in general second order scalar-tensor theory: The case of nonminimal derivative coupling, Phys. Rev. D, 92, Article 044050 pp. (2015), arXiv:1504.05189 [gr-qc]
[255] Charmousis, C.; Copeland, E. J.; Padilla, A.; Saffin, P. M., General second order scalar-tensor theory, self tuning, and the Fab Four, Phys. Rev. Lett., 108, Article 051101 pp. (2012), arXiv:1106.2000 [hep-th]
[256] Lattimer, J. M.; Prakash, M., Neutron star structure and the equation of state, Astrophys. J., 550, 426 (2001), arXiv:astro-ph/0002232
[257] Cheong, P. C.K.; Li, T. G.F., Numerical studies on core collapse supernova in self-interacting massive scalar-tensor gravity, Phys. Rev. D, 100, Article 024027 pp. (2019), arXiv:1812.04835 [gr-qc]
[258] Silva, H. O.; Sotani, H.; Berti, E.; Horbatsch, M., Torsional oscillations of neutron stars in scalar-tensor theory of gravity, Phys. Rev. D, 90, Article 124044 pp. (2014), arXiv:1410.2511 [gr-qc]
[259] Harada, T., Neutron stars in scalar tensor theories of gravity and catastrophe theory, Phys. Rev. D, 57, 4802 (1998), arXiv:gr-qc/9801049
[260] Doneva, D. D.; Yazadjiev, S. S.; Stergioulas, N.; Kokkotas, K. D., Differentially rotating neutron stars in scalar-tensor theories of gravity, Phys. Rev. D, 98, Article 104039 pp. (2018), arXiv:1807.05449 [gr-qc]
[261] Palenzuela, C.; Liebling, S. L., Constraining scalar-tensor theories of gravity from the most massive neutron stars, Phys. Rev. D, 93, Article 044009 pp. (2016), arXiv:1510.03471 [gr-qc]
[262] Mendes, R. F.P.; Ortiz, N., Highly compact neutron stars in scalar-tensor theories of gravity: Spontaneous scalarization versus gravitational collapse, Phys. Rev. D, 93, Article 124035 pp. (2016), arXiv:1604.04175 [gr-qc]
[263] Kobyakov, D.; Pethick, C. J., Dynamics of the inner crust of neutron stars: hydrodynamics, elasticity and collective modes, Phys. Rev. C. Phys. Rev. C, Phys. Rev. C, 94, 059902 (2016), (erratum). arXiv:1303.1315 [nucl-th]
[264] Freire, P. C.C., The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity, Mon. Not. R. Astron. Soc., 423, 3328 (2012), arXiv:1205.1450 [astro-ph.GA]
[265] Sotani, H.; Kokkotas, K. D., Maximum mass limit of neutron stars in scalar-tensor gravity, Phys. Rev. D, 95, Article 044032 pp. (2017), arXiv:1702.00874 [gr-qc]
[266] Oyamatsu, K.; Iida, K., The symmetry energy at subnuclear densities and nuclei in neutron star crusts, Phys. Rev. C, 75, Article 015801 pp. (2007), arXiv:nucl-th/0609040
[267] Mendes, R. F.P.; Ortiz, N., New class of quasinormal modes of neutron stars in scalar-tensor gravity, Phys. Rev. Lett., 120, Article 201104 pp. (2018), arXiv:1802.07847 [gr-qc]
[268] Watts, A. L.; Strohmayer, T. E., Neutron star oscillations and QPOs during magnetar flares, Adv. Space Res., 40, 1446 (2007), arXiv:astro-ph/0612252
[269] Baumgarte, T. W.; Shapiro, S. L.; Shibata, M., Astrophys. J. Lett., 528, L29 (2000)
[270] Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Najafi, M., Dilatonic equation of hydrostatic equilibrium and neutron star structure, Astrophys. Space Sci., 358, 30 (2015), arXiv:1503.01011 [gr-qc]
[271] Horbatsch, M.; Silva, H. O.; Gerosa, D.; Pani, P.; Berti, E.; Gualtieri, L.; Sperhake, U., Tensor-multi-scalar theories: relativistic stars and 3 + 1 decomposition, Classical Quantum Gravity, 32, Article 204001 pp. (2015), arXiv:1505.07462 [gr-qc] · Zbl 1327.83027
[272] Novak, J., Spherical neutron star collapse in tensor - scalar theory of gravity, Phys. Rev. D, 57, 4789 (1998), gr-qc/9707041
[273] Yazadjiev, S. S.; Doneva, D. D., Dark compact objects in massive tensor-multi-scalar theories of gravity, Phys. Rev. D, 99, Article 084011 pp. (2019), arXiv:1901.06379 [gr-qc]
[274] Doneva, D. D.; Yazadjiev, S. S., Nontopological spontaneously scalarized neutron stars in tensor-multiscalar theories of gravity, Phys. Rev. D, 101, Article 104010 pp. (2020), arXiv:2004.03956 [gr-qc]
[275] Doneva, D. D.; Yazadjiev, S. S., Mixed configurations of tensor-multi-scalar solitons and neutron stars, Phys. Rev. D, 101, Article 024009 pp. (2020), arXiv:1909.00473 [gr-qc]
[276] Doneva, D. D.; Yazadjiev, S. S., Topological neutron stars in tensor-multi-scalar theories of gravity, Phys. Rev. D, 101, Article 064072 pp. (2020), arXiv:1911.06908 [gr-qc]
[277] Wojnar, A.; Velten, H., Equilibrium and stability of relativistic stars in extended theories of gravity, Eur. Phys. J. C, 76, 697 (2016), arXiv:astro-ph/1604.04257
[278] Capozziello, S.; Lobo, F. S., Energy conditions in modified gravity, Phys. Lett. B, 730, 280 (2014), arXiv:gr-qc/1312.0784 · Zbl 1381.83097
[279] Capozziello, S.; Lobo, F. S.N.; Mimoso, J. P., Generalized energy conditions in extended theories of gravity, Phys. Rev. D, 91, Article 124019 pp. (2015), arXiv:gr-qc/1407.7293
[280] Mimoso, J. P.; Lobo, F. S.; Capozziello, S., Extended theories of gravity with generalized energy conditions, J. Phys. Conf. Ser., 600, Article 012047 pp. (2015), arXiv:gr-qc/1412.6670
[281] Kobayashi, T.; Hiramatsu, T., Relativistic stars in degenerate higher-order scalar-tensor theories after GW170817, Phys. Rev. D, 97, Article 104012 pp. (2018), arXiv:1803.10510 [gr-qc]
[282] Langlois, D.; Saito, R.; Yamauchi, D.; Noui, K., Scalar-tensor theories and modified gravity in the wake of GW170817, Phys. Rev. D, 97, Article 061501 pp. (2018), arXiv:1711.07403 [gr-qc]
[283] Saltas, I. D.; Lopes, I., Obtaining precision constraints on modified gravity with helioseismology, Phys. Rev. Lett., 123, Article 091103 pp. (2019), arXiv:1909.02552 [astro-ph.CO]
[284] de Rham, C.; Matas, A., Ostrogradsky in theories with multiple fields, J. Cosmol. Astropart. Phys., 1606, 041 (2016), arXiv:1604.08638 [hep-th]
[285] Crisostomi, M.; Koyama, K., Self-accelerating universe in scalar-tensor theories after GW170817, Phys. Rev. D, 97, Article 084004 pp. (2018), arXiv:1712.06556 [astro-ph.CO]
[286] Babichev, E.; Deffayet, C., An introduction to the vainshtein mechanism, Classical Quantum Gravity, 30, Article 184001 pp. (2013), arXiv:1304.7240 [gr-qc] · Zbl 1277.83002
[287] Sakstein, J.; Wilcox, H.; Bacon, D.; Koyama, K.; Nichol, R. C., Testing gravity using galaxy clusters: New constraints on beyond horndeski theories, J. Cosmol. Astropart. Phys., 1607, 019 (2016), arXiv:1603.06368 [astro-ph.CO]
[288] Bettoni, D.; Ezquiaga, J. M.; Hinterbichler, K.; Zumalacárregui, M., Speed of gravitational waves and the fate of scalar-tensor gravity, Phys. Rev. D, 95, Article 084029 pp. (2017), arXiv:1608.01982 [gr-qc]
[289] Chagoya, J.; Tasinato, G., Compact objects in scalar-tensor theories after GW170817, J. Cosmol. Astropart. Phys., 1808, 006 (2018), arXiv:1803.07476 [gr-qc] · Zbl 07461335
[290] Chagoya, J.; Niz, G.; Tasinato, G., Black holes and neutron stars in vector galileons, Classical Quantum Gravity, 34, Article 165002 pp. (2017), arXiv:1703.09555 [gr-qc] · Zbl 1371.83143
[291] Momeni, D.; Faizal, M.; Myrzakulov, K.; Myrzakulov, R., Compact stars in vector-tensor-Horndeski theory of gravity, Eur. Phys. J. C, 77, 37 (2017), arXiv:1606.05526 [physics.gen-ph]
[292] Pani, P.; Berti, E.; Cardoso, V.; Read, J., Compact stars in alternative theories of gravity, Einstein-Dilaton-Gauss-Bonnet gravity, Phys. Rev. D, 84, Article 104035 pp. (2011), arXiv:1109.0928 [gr-qc]
[293] Panotopoulos, G.; Rincón, Á., Relativistic strange quark stars in Lovelock gravity, Eur. Phys. J. Plus, 134, 472 (2019), arXiv:1907.03545 [gr-qc]
[294] Damour, T.; Esposito-Farese, G., Tensor - scalar gravity and binary pulsar experiments, Phys. Rev. D, 54, 1474 (1996), arXiv:gr-qc/9602056
[295] Gross, D. J.; Sloan, J. H., The quartic effective action for the heterotic string, Nuclear Phys. B, 291, 41 (1987)
[296] Pani, P.; Cardoso, V., Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-bonnet black holes, Phys. Rev. D, 79, Article 084031 pp. (2009), arXiv:0902.1569 [gr-qc]
[297] Silva, H. O.; Sakstein, J.; Gualtieri, L.; Sotiriou, T. P.; Berti, E., Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett., 120, Article 131104 pp. (2018), arXiv:1711.02080 [gr-qc]
[298] Doneva, D. D.; Yazadjiev, S. S., Neutron star solutions with curvature induced scalarization in the extended Gauss-Bonnet scalar-tensor theories, J. Cosmol. Astropart. Phys., 1804, 011 (2018), arXiv:1712.03715 [gr-qc] · Zbl 07458847
[299] Blázquez-Salcedo, J. L.; González-Romero, L. M.; Kunz, J.; Mojica, S.; Navarro-Lérida, F., Axial quasinormal modes of Einstein-Gauss-Bonnet-dilaton neutron stars, Phys. Rev. D, 93, Article 024052 pp. (2016), arXiv:1511.03960 [gr-qc]
[300] Kase, R.; Minamitsuji, M.; Tsujikawa, S., Relativistic stars in vector-tensor theories, Phys. Rev. D, 97, Article 084009 pp. (2018), arXiv:1711.08713 [gr-qc]
[301] De Felice, A.; Heisenberg, L.; Kase, R.; Tsujikawa, S.; Zhang, Y.l.; Zhao, G. B., Screening fifth forces in generalized Proca theories, Phys. Rev. D, 93, Article 104016 pp. (2016), arXiv:1602.00371 [gr-qc]
[302] Heisenberg, L., Generalization of the Proca action, J. Cosmol. Astropart. Phys., 1405, 015 (2014), arXiv:1402.7026 [hep-th]
[303] Beltran Jimenez, J.; Heisenberg, L., Derivative self-interactions for a massive vector field, Phys. Lett. B, 757, 405 (2016), arXiv:1602.03410 [hep-th] · Zbl 1360.83046
[304] Nicolis, A.; Rattazzi, R.; Trincherini, E., The galileon as a local modification of gravity, Phys. Rev. D, 79, Article 064036 pp. (2009), arXiv:0811.2197 [hep-th]
[305] Hinterbichler, K., Theoretical aspects of massive gravity, Rev. Modern Phys., 84, 671 (2012), arXiv:1105.3735 [hep-th]
[306] de Rham, C., Massive gravity, Living Rev. Rel., 17, 7 (2014), arXiv:1401.4173 [hep-th] · Zbl 1320.83018
[307] Katsuragawa, T.; Nojiri, S.; Odintsov, S. D.; Yamazaki, M., Relativistic stars in de Rham-Gabadadze-Tolley massive gravity, Phys. Rev. D, 93, Article 124013 pp. (2016), arXiv:1512.00660 [gr-qc]
[308] Kareeso, P.; Burikham, P.; Harko, T., Mass - radius ratio bounds for compact objects in massive gravity theory, Eur. Phys. J. C, 78, 941 (2018), arXiv:1802.01017 [gr-qc]
[309] Wiringa, R. B.; Stoks, V. G.J.; Schiavilla, R., An accurate nucleon-nucleon potential with charge independence breaking, Phys. Rev. C, 51, 38 (1995), arXiv:nucl-th/9408016
[310] Stoks, V. G.J.; Klomp, R. A.M.; Terheggen, C. P.F.; de Swart, J. J., Construction of high quality N N potential models, Phys. Rev. C, 49, 2950 (1994), arXiv:nucl-th/9406039
[311] Magueijo, J.; Smolin, L., Gravity’s rainbow, Classical Quantum Gravity, 21, 1725 (2004), arXiv:gr-qc/0305055 · Zbl 1051.83004
[312] Hendi, S. H.; Bordbar, G. H.; Panah, B. E.; Panahiyan, S., Modified TOV in gravity’s rainbow: properties of neutron stars and dynamical stability conditions, J. Cosmol. Astropart. Phys., 1609, 013 (2016), arXiv:1509.05145 [hep-th]
[313] Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S., Neutron stars structure in the context of massive gravity, J. Cosmol. Astropart. Phys., 1707, 004 (2017), arXiv:1701.01039 [gr-qc]
[314] Eslam Panah, B.; Liu, H. L., White dwarfs in massive gravity, Phys. Rev. D, 99, Article 104074 pp. (2019), arXiv:1805.10650 [gr-qc]
[315] Hassan, S. F.; Rosen, R. A., On non-linear actions for massive gravity, J. High Energy Phys., 1107, 009 (2011), arXiv:1103.6055 [hep-th] · Zbl 1298.81468
[316] Enander, J.; Mortsell, E., On stars, galaxies and black holes in massive bigravity, J. Cosmol. Astropart. Phys., 1511, 023 (2015), arXiv:1507.00912 [astro-ph.CO]
[317] Aoki, K.; Maeda, K.i.; Tanabe, M., Relativistic stars in bigravity theory, Phys. Rev. D, 93, Article 064054 pp. (2016), arXiv:1602.02227 [gr-qc]
[318] Huang, Q. G.; Piao, Y. S.; Zhou, S. Y.; Gravity, Mass-Varying. Massive.; Phys. Rev, Y.l., Mass-varying massive gravity, Phys. Rev. D, 86, Article 124014 pp. (2012), arXiv:1206.5678 [hep-th]
[319] Maluf, J. W., The teleparallel equivalent of general relativity, Ann. Phys., 525, 339 (2013), arXiv:1303.3897 [gr-qc]
[320] Ilijic, S.; Sossich, M., Compact stars in \(f ( T )\) extended theory of gravity, Phys. Rev. D, 98, Article 064047 pp. (2018), arXiv:1807.03068 [gr-qc]
[321] DeBenedictis, A.; Ilijic, S., Spherically symmetric vacuum in covariant \(F ( T ) = T + \frac{ \alpha}{ 2} T^2 + \mathcal{O} ( T^\gamma )\) gravity theory, Phys. Rev. D, 94, Article 124025 pp. (2016), arXiv:1609.07465 [gr-qc]
[322] D. Deb, S. Ghosh, S.K. Maurya, M. Khlopov, S. Ray, Anisotropic compact stars in \(f ( T )\) gravity under Karmarkar condition, arXiv:1811.11797 [gr-qc].
[323] Sebastiani, L.; Vagnozzi, S.; Myrzakulov, R., Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics, Adv. High Energy Phys., 2017, Article 3156915 pp. (2017), arXiv:1612.08661 [gr-qc]
[324] Astashenok, A. V.; Odintsov, S. D., From neutron stars to quark stars in mimetic gravity, Phys. Rev. D, 94, Article 063008 pp. (2016), arXiv:1512.07279 [gr-qc]
[325] Xu, R.; Zhao, J.; Shao, L., Neutron star structure in the minimal gravitational standard-model extension and the implication to continuous gravitational waves, Phys. Lett. B, 803, Article 135283 pp. (2020), arXiv:1909.10372 [gr-qc] · Zbl 1434.85012
[326] Horava, P., Quantum gravity at a lifshitz point, Phys. Rev. D, 79, Article 084008 pp. (2009), arXiv:0901.3775 [hep-th]
[327] Liu, M.; Lu, J.; Yu, B.; Lu, J., Solar system constraints on asymptotically flat IR modified horava gravity through light deflection, Gen. Relativity Gravitation, 43, 1401 (2011), arXiv:1010.6149 [gr-qc] · Zbl 1215.83044
[328] K. Kim, J.J. Oh, C. Park, E.J. Son, Neutron Star Structure in Hořava-Lifshitz Gravity, arXiv:1810.07497 [gr-qc].
[329] C. Eling, T. Jacobson, D. Mattingly, Einstein-Aether theory, arXiv:gr-qc/0410001. · Zbl 1176.83014
[330] Eling, C.; Jacobson, T.; Coleman Miller, M., Neutron stars in Einstein-aether theory, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 80, 129906 (2009), (erratum). arXiv:0705.1565 [gr-qc]
[331] Farhi, E.; Jaffe, R. L., Phys. Rev. D, 30, 2379 (1984)
[332] Barausse, E., Neutron star sensitivities in Hořava gravity after GW170817, Phys. Rev. D, 100, Article 084053 pp. (2019), arXiv:1907.05958 [gr-qc]
[333] Randall, L.; Sundrum, R., A large mass hierarchy from a small extra dimension, Phys. Rev. Lett., 83, 3370 (1999), arXiv:hep-ph/9905221 [hep-ph] · Zbl 0946.81063
[334] Randall, L.; Sundrum, R., An alternative to compactification, Phys. Rev. Lett., 83, 4690 (1999), arXiv:hep-th/9906064 [hep-th] · Zbl 0946.81074
[335] Wiseman, T., Relativistic stars in Randall-Sundrum gravity, Phys. Rev. D, 65, Article 124007 pp. (2002), arXiv:hep-th/0111057 [hep-th]
[336] Creek, S.; Gregory, R.; Kanti, P.; Mistry, B., Braneworld stars and black holes, Classical Quantum Gravity, 23, 6633 (2006), arXiv:hep-th/0606006 [hep-th] · Zbl 1117.85314
[337] Ovalle, J., Searching exact solutions for compact stars in braneworld: A conjecture, Modern Phys. Lett. A, 23, 3247 (2008), arXiv:gr-qc/0703095 [gr-qc] · Zbl 1165.83352
[338] Ovalle, J.; Linares, F., Tolman IV solution in the Randall-Sundrum Braneworld, Phys. Rev. D, 88, Article 104026 pp. (2013), arXiv:1311.1844 [gr-qc]
[339] García-Aspeitia, M. A.; Ureña López, L., Stellar stability in brane-worlds revisited, Classical Quantum Gravity, 32, Article 025014 pp. (2015), arXiv:1405.3932 [gr-qc] · Zbl 1307.85003
[340] Bertolami, O.; Lobo, F. S.N.; Paramos, J., Non-minimum coupling of perfect fluids to curvature, Phys. Rev. D, 78, Article 064036 pp. (2008), arXiv:0806.4434 [gr-qc]
[341] Harko, T.; Lobo, F. S.N.; Nojiri, S.; Odintsov, S. D., \( f ( R , T )\) Gravity, Phys. Rev. D, 84, Article 024020 pp. (2011), arXiv:1104.2669 [gr-qc]
[342] Faraoni, V., The Lagrangian description of perfect fluids and modified gravity with an extra force, Phys. Rev. D, 80, Article 124040 pp. (2009), arXiv:0912.1249 [astro-ph.GA]
[343] Avelino, P. P.; Azevedo, R. P.L., Perfect fluid Lagrangian and its cosmological implications in theories of gravity with nonminimally coupled matter fields, Phys. Rev. D, 97, Article 064018 pp. (2018), arXiv:1802.04760 [gr-qc]
[344] Moraes, P. H.R. S.; Arbañil, J. D.V.; Malheiro, M., Stellar equilibrium configurations of compact stars in \(f ( R , T )\) gravity, J. Cosmol. Astropart. Phys., 1606, 005 (2016), arXiv:1511.06282 [gr-qc]
[345] Das, A.; Rahaman, F.; Guha, B. K.; Ray, S., Compact stars in \(f ( R , \mathcal{T} )\) gravity, Eur. Phys. J. C, 76, 654 (2016), arXiv:1608.00566 [gr-qc]
[346] Deb, D.; Ketov, S. V.; Khlopov, M.; Ray, S., Study on charged strange stars in \(f ( R , \mathcal{T} )\) gravity, J. Cosmol. Astropart. Phys., 1910, 070 (2019), arXiv:1812.11736 [gr-qc]
[347] Usov, V. V., Electric fields at the quark surface of strange stars in the color-flavor locked phase, Phys. Rev. D, 70, Article 067301 pp. (2004), arXiv:astro-ph/0408217
[348] Zubair, M.; Abbas, G.; Noureen, I., Possible formation of compact stars in \(f ( R , T )\) gravity, Astrophys. Space Sci., 361, 8 (2016), arXiv:1512.05202 [physics.gen-ph]
[349] Maurya, S. K.; Tello-Ortiz, F., Charged anisotropic compact star in \(f ( R , \mathcal{T} )\) gravity: A minimal geometric deformation gravitational decoupling approach, Phys. Dark Univ., 27, Article 100442 pp. (2020), arXiv:1905.13519 [gr-qc]
[350] Maurya, S. K.; Errehymy, A.; Deb, D.; Tello-Ortiz, F.; Daoud, M., Study on anisotropic strange stars in \(f ( R , T )\) gravity: An embedding approach under simplest linear functional of matter-geometry coupling, Phys. Rev. D, 100, Article 044014 pp. (2019), arXiv:1907.10149 [gr-qc]
[351] G.A. Carvalho, S.I. d. Santos, P.H.R.S. Moraes, M. Malheiro, Strange stars in energy-momentum-conserved \(f ( R , T )\) gravity, arXiv:1911.02484 [gr-qc]. · Zbl 1443.83043
[352] A. Mathew, M. Shafeeque, M.K. Nandy, Stellar structure of quark stars in a modified Starobinsky gravity, arXiv:2006.06421 [gr-qc].
[353] Rastall, P., Generalization of the Einstein theory, Phys. Rev. D, 6, 3357 (1972) · Zbl 0959.83525
[354] Rastall, P., Can. J. Phys., 54, 66 (1976) · Zbl 1043.83558
[355] Oliveira, A. M.; Velten, H. E.S.; Fabris, J. C.; Casarini, L., Neutron stars in Rastall gravity, Phys. Rev. D, 92, Article 044020 pp. (2015), arXiv:1506.00567 [gr-qc]
[356] S. Hansraj, A. Banerjee, Equilibrium stellar configurations in Rastall theory and linear equation of state, arXiv:1807.00812 [gr-qc]. · Zbl 1435.83126
[357] Jack Ng, Y.; van Dam, H., Possible solution to the cosmological-constant problem, Phys. Rev. Lett., 65, 1972 (1990) · Zbl 1050.83503
[358] Astorga-Moreno, J. A.; Chagoya, J.; Flores-Urbina, J. C.; Garcia-Aspeitia, M. A., Stellar dynamics in unimodular gravity, J. Cosmol. Astropart. Phys., 09, 005 (2019), arXiv:1905.11253 [gr-qc]
[359] Lazo, M. J.; Paiva, J.; Amaral, J. T.S.; Frederico, G. S.F., From an action principle for action-dependent Lagrangians toward non-conservative gravity: accelerating universe without dark energy, Phys. Rev. D, 95, Article 101501 pp. (2017), arXiv:1705.04604 [gr-qc]
[360] Fabris, J. C.; Velten, H.; Wojnar, A., On the existence of static spherically-symmetric objects in action-dependent Lagrangian theories, Phys. Rev. D, 99, Article 124031 pp. (2019), arXiv:1903.12193 [gr-qc]
[361] Santos, E., Neutron stars in generalized f(R) gravity, Astrophys. Space Sci., 341, 411 (2012), arXiv:1104.2140 [gr-qc] · Zbl 1284.85015
[362] Deliduman, C.; Eksi, K. Y.; Keles, V., Neutron star solutions in perturbative quadratic gravity, J. Cosmol. Astropart. Phys., 1205, 036 (2012), arXiv:1112.4154 [gr-qc]
[363] Glendenning, N. K.; Schaffner-Bielich, J., First order kaon condensate, Phys. Rev. C, 60, Article 025803 pp. (1999), arXiv:astro-ph/9810290
[364] Shamir, M. F.; Zia, S., Physical attributes of anisotropic compact stars in \(f ( R , G )\) gravity, Eur. Phys. J. C, 77, 448 (2017), arXiv:1705.06582 [physics.gen-ph]
[365] Shamir, M. F.; Ahmad, M., Emerging anisotropic compact stars in \(f ( \mathcal{G} , T )\) gravity, Eur. Phys. J. C, 77, 674 (2017), arXiv:1705.06910 [gr-qc]
[366] Shamir, M. F.; Zia, S., Analysis of charged compact stars in modified gravity, Internat. J. Modern Phys. D, 27, Article 1850082 pp. (2018), arXiv:1804.09251 [gr-qc] · Zbl 1430.83082
[367] Sert, O.; Çeliktas, F.; Adak, M., Anisotropic stars in the non-minimal \(Y ( R ) F^2\) gravity, Eur. Phys. J. C, 78, 824 (2018), arXiv:1805.07730 [gr-qc]
[368] Sharif, M.; Waseem, A., Stellar evolution of compact stars in curvature-matter coupling gravity, PTEP, 2019, 053E02 (2019), arXiv:1904.05885 [gr-qc]
[369] Arapoğlu, A. S.; Ekşi, K. Y.; Emrah Yükselci, A., Neutron star structure in the presence of nonminimally coupled scalar fields, Phys. Rev. D, 99, Article 064055 pp. (2019), arXiv:1903.00391 [gr-qc]
[370] Nari, N.; Roshan, M., Compact stars in energy-momentum squared gravity, Phys. Rev. D, 98, Article 024031 pp. (2018), arXiv:1802.02399 [gr-qc]
[371] Akarsu, Ö.; Barrow, J. D.; Çıkıntoğlu, S.; Ekşi, K. Y.; Katırcı, N., Constraint on energy-momentum squared gravity from neutron stars and its cosmological implications, Phys. Rev. D, 97, Article 124017 pp. (2018), arXiv:1802.02093 [gr-qc]
[372] Lopez Armengol, F. G.; Romero, G. E., Neutron stars in scalar-tensor-vector gravity, Gen. Relativity Gravitation, 49, 27 (2017), arXiv:1611.05721 [gr-qc] · Zbl 1358.83074
[373] Parker, L.; Simon, J. Z., Einstein Equation with quantum corrections reduced to second order, Phys. Rev. D, 47, 1339 (1993), arXiv:gr-qc/9211002
[374] Birrell, N. D.; Davies, P. C.W., (Quantum Fields in Curved. Quantum Fields in Curved, Space, Cambridge Monographs on Mathematical Physics (1984), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK) · Zbl 0972.81605
[375] Carballo-Rubio, R., Stellar equilibrium in semiclassical gravity, Phys. Rev. Lett., 120, Article 061102 pp. (2018), arXiv:1706.05379 [gr-qc]
[376] Barcelo, C.; Liberati, S.; Sonego, S.; Visser, M., Fate of gravitational collapse in semiclassical gravity, Phys. Rev. D, 77, Article 044032 pp. (2008), arXiv:0712.1130 [gr-qc]
[377] Stergioulas, N., Rotating stars in relativity, Living Rev. Rel., 6, 3 (2003), arXiv:gr-qc/0302034 · Zbl 1068.83508
[378] Hartle, J. B., Slowly rotating relativistic stars. 1. equations of structure, Astrophys. J., 150, 1005 (1967)
[379] M.S. Kehl, N. Wex, M. Kramer, K. Liu, Future measurements of the Lense-Thirring effect in the Double Pulsar, arXiv:1605.00408 [astro-ph.HE].
[380] Friedman, J. L.; Morsink, S. M., Axial instability of rotating relativistic stars, Astrophys. J., 502, 714 (1998), arXiv:gr-qc/9706073
[381] Staykov, K. V.; Doneva, D. D.; Yazadjiev, S. S.; Kokkotas, K. D., Slowly rotating neutron and strange stars in \(R^2\) gravity, J. Cosmol. Astropart. Phys., 1410, 006 (2014), arXiv:1407.2180 [gr-qc]
[382] D. Gondek-Rosinska, F. Limousin, The final phase of inspiral of strange quark star binaries, arXiv:0801.4829 [gr-qc].
[383] Staykov, K.; Ekşi, K. Y.; Yazadjiev, S. S.; Türkoğlu, M. M.; Arapoğlu, A. S., Moment of inertia of neutron star crust in alternative and modified theories of gravity, Phys. Rev. D, 94, Article 024056 pp. (2016), arXiv:1507.05878 [gr-qc]
[384] Staykov, K. V.; Doneva, D. D.; Yazadjiev, S. S., Orbital and epicyclic frequencies around neutron and strange stars in \(R^2\) gravity, Eur. Phys. J. C, 75, 607 (2015), arXiv:1508.07790 [gr-qc]
[385] Pani, P.; Berti, E., Slowly rotating neutron stars in scalar-tensor theories, Phys. Rev. D, 90, Article 024025 pp. (2014), arXiv:1405.4547 [gr-qc]
[386] Popchev, D.; Staykov, K. V.; Doneva, D. D.; Yazadjiev, S. S., Moment of inertia - mass universal relations for neutron stars in scalar-tensor theory with self-interacting massive scalar field, Eur. Phys. J. C, 79, 178 (2019), arXiv:1812.00347 [gr-qc]
[387] Staykov, K. V.; Popchev, D.; Doneva, D. D.; Yazadjiev, S. S., Static and slowly rotating neutron stars in scalar-tensor theory with self-interacting massive scalar field, Eur. Phys. J. C, 78, 586 (2018), arXiv:1805.07818 [gr-qc]
[388] Silva, H. O.; Macedo, C. F.B.; Berti, E.; Crispino, L. C.B., Slowly rotating anisotropic neutron stars in general relativity and scalar-tensor theory, Classical Quantum Gravity, 32, Article 145008 pp. (2015), arXiv:1411.6286 [gr-qc] · Zbl 1327.83076
[389] Staykov, K. V.; Doneva, D. D.; Yazadjiev, S. S.; Kokkotas, K. D., Gravitational wave asteroseismology of neutron and strange stars in R \({}^2\) gravity, Phys. Rev. D, 92, Article 043009 pp. (2015), arXiv:1503.04711 [gr-qc]
[390] Andersson, N.; Kokkotas, K. D., Gravitational waves and pulsating stars: What can we learn from future observations?, Phys. Rev. Lett., 77, 4134 (1996), arXiv:gr-qc/9610035
[391] Silva, H. O.; Maselli, A.; Minamitsuji, M.; Berti, E., Compact objects in Horndeski gravity, Internat. J. Modern Phys. D, 25, Article 1641006 pp. (2016), arXiv:1602.05997 [gr-qc] · Zbl 1347.83027
[392] Cisterna, A.; Delsate, T.; Ducobu, L.; Rinaldi, M., Slowly rotating neutron stars in the nonminimal derivative coupling sector of horndeski gravity, Phys. Rev. D, 93, Article 084046 pp. (2016), arXiv:1602.06939 [gr-qc]
[393] Maselli, A.; Silva, H. O.; Minamitsuji, M.; Berti, E., Neutron stars in horndeski gravity, Phys. Rev. D, 93, Article 124056 pp. (2016), arXiv:1603.04876 [gr-qc]
[394] Glendenning, N. K., Neutron stars are giant hypernuclei?, Astrophys. J., 293, 470 (1985)
[395] Kramer, M.; Wex, N., The double pulsar system: A unique laboratory for gravity, Classical Quantum Gravity, 26, Article 073001 pp. (2009) · Zbl 1161.85300
[396] Sakstein, J.; Babichev, E.; Koyama, K.; Langlois, D.; Saito, R., Towards strong field tests of beyond horndeski gravity theories, Phys. Rev. D, 95, Article 064013 pp. (2017), arXiv:1612.04263 [gr-qc]
[397] Sullivan, A.; Yunes, N., Slowly-rotating neutron stars in massive bigravity, Classical Quantum Gravity, 35, Article 045003 pp. (2018), arXiv:1709.03311 [gr-qc] · Zbl 1386.83120
[398] Lattimer, J. M.; Swesty, F. D., A generalized equation of state for hot, dense matter, Nuclear Phys. A, 535, 331 (1991)
[399] Margaritis, C.; Koliogiannis, P. S.; Moustakidis, C. C., Speed of sound constraints on maximally-rotating neutron stars, Phys. Rev. D, 101, Article 043023 pp. (2020), arXiv:1910.05767 [nucl-th]
[400] Friedman, J. L.; Stergioulas, N., Rotating Relativistic Stars (Cambridge Monographs on Mathematical Physics) (2013), Cambridge University Press · Zbl 1306.85001
[401] Doneva, D. D.; Yazadjiev, S. S.; Stergioulas, N.; Kokkotas, K. D., Rapidly rotating neutron stars in scalar-tensor theories of gravity, Phys. Rev. D, 88, Article 084060 pp. (2013), arXiv:1309.0605 [gr-qc]
[402] Yazadjiev, S. S.; Doneva, D. D.; Kokkotas, K. D., Rapidly rotating neutron stars in R-squared gravity, Phys. Rev. D, 91, Article 084018 pp. (2015), arXiv:1501.04591 [gr-qc]
[403] Yazadjiev, S. S.; Doneva, D. D.; Kokkotas, K. D., Oscillation modes of rapidly rotating neutron stars in scalar-tensor theories of gravity, Phys. Rev. D, 96, Article 064002 pp. (2017), arXiv:1705.06984 [gr-qc]
[404] Kleihaus, B.; Kunz, J.; Mojica, S.; Zagermann, M., Rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory, Phys. Rev. D, 93, Article 064077 pp. (2016), arXiv:1601.05583 [gr-qc]
[405] Diaz-Alonso, J.; Ibanez-Cabanell, J. M., Astrophys. J., 291, 308 (1985)
[406] Komatsu, H.; Eriguchi, Y.; Hachisu, I., Rapidly rotating general relativistic stars. I - numerical method and its application to uniformly rotating polytropes, Mon. Not. R. Astron. Soc., 237, 355 (1989) · Zbl 0671.76064
[407] Forbes, M. M.; Bose, S.; Reddy, S.; Zhou, D.; Mukherjee, A.; De, S., Constraining the neutron-matter equation of state with gravitational waves, Phys. Rev. D, 100, Article 083010 pp. (2019), arXiv:1904.04233 [astro-ph.HE]
[408] E. Nakar, The electromagnetic counterparts of compact binary mergers. arXiv:1912.05659 [astro-ph.HE].
[409] Barausse, E.; Palenzuela, C.; Ponce, M.; Lehner, L., Neutron-star mergers in scalar-tensor theories of gravity, Phys. Rev. D, 87, Article 081506 pp. (2013), arXiv:1212.5053 [gr-qc]
[410] J.L. Blázquez-Salcedo, F.S. Khoo, J. Kunz, Ultra long lived quasinormal modes of neutron stars in \(R^2\) gravity, arXiv:2001.09117 [gr-qc].
[411] Yagi, K.; Stein, L. C.; Yunes, N.; Tanaka, T., Isolated and binary neutron stars in dynamical chern-simons gravity, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 93, 089909 (2016), arXiv:1302.1918 [gr-qc] Erratum
[412] Kramer, M., Tests of general relativity from timing the double pulsar, Science, 314, 97 (2006), arXiv:astro-ph/0609417
[413] Shen, H.; Toki, H.; Oyamatsu, K.; Sumiyoshi, K., Relativistic equation of state of nuclear matter for supernova and neutron star, Nuclear Phys. A, 637, 435 (1998), arXiv:nucl-th/9805035
[414] Okounkova, M.; Stein, L. C.; Scheel, M. A.; Teukolsky, S. A., Numerical binary black hole collisions in dynamical chern-simons gravity, Phys. Rev. D, 100, Article 104026 pp. (2019), arXiv:1906.08789 [gr-qc]
[415] Carson, Z.; Seymour, B. C.; Yagi, K., Future prospects for probing scalar-tensor theories with gravitational waves from mixed binaries, Classical Quantum Gravity, 37, Article 065008 pp. (2020), arXiv:1907.03897 [gr-qc]
[416] Zhang, C.; Zhao, X.; Wang, A.; Wang, B.; Yagi, K.; Yunes, N.; Zhao, W.; Zhu, T., Gravitational waves from the quasi-circular inspiral of compact binaries in Einstein-aether theory, Phys. Rev. D, 101, Article 044002 pp. (2020), arXiv:1911.10278 [gr-qc]
[417] Zhao, X., Gravitational waveforms and radiation powers of the triple system PSR j0337+1715 in modified theories of gravity, Phys. Rev. D, 100, Article 083012 pp. (2019), arXiv:1903.09865 [astro-ph.HE]
[418] De, S.; Finstad, D.; Lattimer, J. M.; Brown, D. A.; Berger, E.; Biwer, C. M., Tidal deformabilities and radii of neutron stars from the observation of GW170817, Phys. Rev. Lett., 121, Article 091102 pp. (2018), arXiv:1804.08583 [astro-ph.HE]
[419] Lattimer, J. M.; Prakash, M., The equation of state of hot dense matter and neutron stars, Phys. Rep., 621, 127 (2016), arXiv:1512.07820 [astro-ph.SR]
[420] Raithel, C.; Özel, F.; Psaltis, D., Tidal deformability from GW170817 as a direct probe of the neutron star radius, Astrophys. J, 857, L23 (2018), arXiv:1803.07687 [astro-ph.HE]
[421] Coughlin, M. W., Constraints on the neutron star equation of state from AT2017gfo using radiative transfer simulations, Mon. Not. R. Astron. Soc., 480, 3871 (2017), arXiv:1805.09371 [astro-ph.HE]
[422] Flanagan, E. E.; Hinderer, T., Constraining neutron star tidal love numbers with gravitational wave detectors, Phys. Rev. D, 77, Article 021502 pp. (2008), arXiv:0709.1915 [astro-ph]
[423] Gupta, T.; Majumder, B.; Yagi, K.; Yunes, N., I-love-Q relations for neutron stars in dynamical chern simons gravity, Classical Quantum Gravity, 35, Article 025009 pp. (2018), arXiv:1710.07862 [gr-qc] · Zbl 1383.83115
[424] Yazadjiev, S. S.; Doneva, D. D.; Kokkotas, K. D., Tidal love numbers of neutron stars in \(f ( R )\) gravity, Eur. Phys. J. C, 78, 818 (2018), arXiv:1803.09534 [gr-qc]
[425] Afonso, V. I.; Bejarano, C.; Beltran Jimenez, J.; Olmo, G. J.; Orazi, E., The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields, Classical Quantum Gravity, 34, Article 235003 pp. (2017), arXiv:1705.03806 [gr-qc] · Zbl 1381.83091
[426] Olmo, G. J., Palatini approach to modified gravity: f(R) theories and beyond, Internat. J. Modern Phys. D, 20, 413 (2011), arXiv:1101.3864 [gr-qc] · Zbl 1217.83004
[427] Stachowski, A.; Szydlowski, M.; Borowiec, A., Starobinsky cosmological model in Palatini formalism, Eur. Phys. J. C, 77, 406 (2017), arXiv:1608.03196 [gr-qc]
[428] Szydlowski, M.; Stachowski, A.; Borowiec, A., Emergence of dynamical dark energy from polynomial \(f ( R )\) theory in Palatini formalism, Eur. Phys. J., 77, 603 (2017), arXiv:1707.01948 [gr-qc]
[429] Dabrowski, M. P.; Garecki, J.; Blaschke, D. B., Conformal transformations and conformal invariance in gravitation, Annalen Phys., 18, 13 (2009), arXiv:0806.2683 [gr-qc] · Zbl 1159.83006
[430] Olmo, G. J., Post-Newtonian constraints on f(R) cosmologies in metric and palatini formalism, Phys. Rev. D, 72, Article 083505 pp. (2005), arXiv:gr-qc/0505135 [gr-qc]
[431] Olmo, G. J., The gravity Lagrangian according to solar system experiments, Phys. Rev. Lett., 95, Article 261102 pp. (2005), arXiv:gr-qc/0505101 [gr-qc]
[432] Vollick, D. N., Palatini approach to Born-infeld-Einstein theory and a geometric description of electrodynamics, Phys. Rev. D, 69, Article 064030 pp. (2004), arXiv:gr-qc/0309101
[433] Banados, M.; Ferreira, P. G., Eddington’s theory of gravity and its progeny, Phys. Rev. Lett., 105, Article 011101 pp. (2010), arXiv:1006.1769 [astro-ph]
[434] Pani, P.; Sotiriou, T. P., Surface singularities in Eddington-inspired Born-infeld gravity, Phys. Rev. Lett., 109, Article 251102 pp. (2012), arXiv:1209.2972 [gr-qc]
[435] Delsate, T.; Steinhoff, J., New insights on the matter-gravity coupling paradigm, Phys. Rev. Lett., 109, Article 021101 pp. (2012), arXiv:1201.4989 [gr-qc]
[436] Beltrán Jiménez, J.; Delhom, A., Ghosts in metric-affine higher order curvature gravity, Eur. Phys. J. C, 79, 656 (2019), arXiv:1901.08988 [gr-qc]
[437] Eisenhart, L. P., Non-Riemannian Geometry (1927), American Mathematical Society: American Mathematical Society New York · JFM 52.0721.02
[438] J.B. Jiménez, A. Delhom, Instabilities in Metric-Affine Theories of Gravity, arXiv:2004.11357 [gr-qc].
[439] Beltrán Jiménez, J.; Heisenberg, L.; Olmo, G. J., Infrared lessons for ultraviolet gravity: The case of massive gravity and Born-infeld, J. Cosmol. Astropart. Phys., 1411, 004 (2014), arXiv:1409.0233 [hep-th]
[440] Delhom, A.; Miralles, V.; Peñuelas, A., Effective interactions in Ricci-based gravity models below the non-metricity scale, Eur. Phys. J. C, 80, 340 (2020), arXiv:1907.05615 [hep-th]
[441] Afonso, V. I.; Olmo, G. J.; Rubiera-Garcia, D., Mapping Ricci-based theories of gravity into general relativity, Phys. Rev. D, 97, Article 021503 pp. (2018), arXiv:1801.10406 [gr-qc]
[442] Afonso, V. I.; Olmo, G. J.; Orazi, E.; Rubiera-Garcia, D., Mapping nonlinear gravity into general relativity with nonlinear electrodynamics, Eur. Phys. J. C, 78, 866 (2018), arXiv:1807.06385 [gr-qc]
[443] Afonso, V. I.; Olmo, G. J.; Orazi, E.; Rubiera-Garcia, D., Correspondence between modified gravity and general relativity with scalar fields, Phys. Rev. D, 99, Article 044040 pp. (2019), arXiv:1810.04239 [gr-qc]
[444] A. Delhom, G.J. Olmo, E. Orazi, Ricci-Based Gravity theories and their impact on Maxwell and nonlinear electromagnetic models, arXiv:1907.04183 [gr-qc]. · Zbl 1429.83058
[445] Harko, T.; Koivisto, T. S.; Lobo, F. S.N.; Olmo, G. J., Metric-palatini gravity unifying local constraints and late-time cosmic acceleration, Phys. Rev. D, 85, Article 084016 pp. (2012), arXiv:1110.1049 [gr-qc]
[446] Harko, T.; Lobo, F. S.N.; Nojiri, S.; Odintsov, S. D., \( f ( R , T )\) gravity, Phys. Rev. D, 84, Article 024020 pp. (2011), arXiv:1104.2669 [gr-qc]
[447] Barrientos, E.; Lobo, F. S.N.; Mendoza, S.; Olmo, G. J.; Rubiera-Garcia, D., Metric-affine \(f ( R T )\) theories of gravity and their applications, Phys. Rev. D, 97, Article 104041 pp. (2018), arXiv:1803.05525 [gr-qc]
[448] Wu, J.; Li, G.; Harko, T.; Liang, S. D., Metric-affine formulation of \(f ( R , T )\) gravity theory, and its cosmological implications, Eur. Phys. J. C, 78, 430 (2018), arXiv:1805.07419 [gr-qc]
[449] Olmo, G. J., Hydrogen atom in palatini theories of gravity, Phys. Rev. D, 77, Article 084021 pp. (2008), arXiv:0802.4038 [gr-qc]
[450] Olmo, G. J., Violation of the equivalence principle in modified theories of gravity, Phys. Rev. Lett., 98, Article 061101 pp. (2007), arXiv:gr-qc/0612002
[451] Barraco, D.; Hamity, V. H.; Vucetich, H., \( f ( R )\) cosmology in the first order formalism, Gen. Relativity Gravitation, 34, 533 (2002) · Zbl 0998.83072
[452] Allemandi, G.; Borowiec, A.; Francaviglia, M., First-order non-linear gravity, Phys. Rev. D, 70, Article 043524 pp. (2004), arXiv:0403264 [hep-th]
[453] Allemandi, G.; Borowiec, A.; Francaviglia, M., Ricci squared gravity, Phys. Rev D, 70, Article 103503 pp. (2004), arXiv:0407090 [hep-th]
[454] Enqvist, K.; Nyrhinen, H. J.; Koivisto, T., Binary systems in Palatini-\( f ( R )\) gravity, Phys. Rev. D, 88, Article 104008 pp. (2013), arXiv:1308.0988 [gr-qc]
[455] Jana, S.; Chakravarty, G. K.; Mohanty, S., Constraints on Born-infeld gravity from the speed of gravitational waves after GW170817 and GRB 170817a, Phys. Rev. D, 97, Article 084011 pp. (2018), arXiv:1711.04137 [gr-qc]
[456] Kainulainen, K.; Reijonen, V.; Sunhede, D., The interior spacetimes of stars in Palatini \(f ( R )\) gravity, Phys. Rev. D., 76, Article 043503 pp. (2007), arXiv:0611132 [gr-qc]
[457] Barausse, E.; Sotiriou, T. P.; Miller, J. C., A no-go theorem for polytropic spheres in Palatini \(f ( R )\) gravity, Classical Quantum Gravity, 25, Article 062001 pp. (2008), arXiv:0703132 [gr-qc] · Zbl 1137.83357
[458] Barausse, E.; Sotiriou, T. P.; Miller, J. C., Polytropic spheres in Palatini \(f ( R )\) gravity, EAS Publications Series, 30, 189 (2008), arXiv:0801.4852 [gr-qc]
[459] Barausse, E.; Sotiriou, T. P.; Miller, J. C., Curvature singularities tidal forces and the viability of Palatini \(f ( R )\) gravity, Classical Quantum Gravity, 25, Article 105008 pp. (2008), arXiv:0712.1141 [gr-qc] · Zbl 1140.83389
[460] Sham, Y.-H.; Leung, P. T.; Lin, L.-M., Compact stars in Eddington-inspired Born-infeld gravity: Anomalies associated with phase transitions, Phys. Rev. D, 87, Article 061503 pp. (2013), arXiv:1304.0550 [gr-qc]
[461] Pani, P.; Cardoso, V.; Delsate, T., Compact stars in Eddington inspired gravity, Phys. Rev. Lett., 107, Article 031101 pp. (2011), arXiv:1106.3569 [gr-qc]
[462] J. Barrientos, O.; Rubilar, G. F., Surface curvature singularities of polytropic spheres in Palatini \(f ( R , T )\) gravity, Phys. Rev. D, 93, Article 024021 pp. (2016)
[463] Olmo, G. J., Re-examination of polytropic spheres in Palatini \(f ( R )\) gravity, Phys. Rev. D, 78, Article 104026 pp. (2008), arXiv:0810.3593 [gr-qc]
[464] Hubeny, I.; D, G. F., Mihalas Theory of Stellar Atmospheres (2014), Princeton University Press
[465] Potekhin, A. Y.; Lai, D.; Chabrier, G.; Ho, W. C.G., Electromagnetic polarization in partially ionized plasmas with strong magnetic fields and neutron star atmosphere models, Astrophys. J., 612, 1034 (2004), arXiv:astro-ph/0405383
[466] Afonso, V. I.; Olmo, G. J.; Orazi, E.; Rubiera-Garcia, D., New scalar compact objects in Ricci-based gravity theories, J. Cosmol. Astropart. Phys., 12, 044 (2019), arXiv:1906.04623 [hep-th] · Zbl 07500948
[467] Gustafsson, B.; Edvardsson, B.; Eriksson, K.; Jorgensen, U. G.; Nordlund, A.; Plez, B., A grid of MARCS model atmospheres for late-type stars I. Methods and general properties, Astron. Astrophys., 486, 951 (2008), arXiv:0805.0554 [astro-ph]
[468] H.-Ch. Kim, B., Physics at the surface of a star in Eddington-inspired Born-infeld gravity, Phys. Rev. D, 89, Article 064001 pp. (2014), arXiv:1312.0705 [gr-qc]
[469] Latorre, A. D.I.; Olmo, G. J.; Ronco, M., Observable traces of non-metricity: new constraints on metric-affine gravity, Phys. Lett. B, 780, 294 (2018), arXiv:1709.04249 [hep-th] · Zbl 1390.83010
[470] Pannia, F. A.T.; Garcia, F.; Bergliaffa, S. E.P.; Orellana, M. M.; Romero, G. E., Structure of compact stars in \(R\)-squared palatini gravity, Gen. Relativity Gravitation, 49, 25 (2017), arXiv:1312.0705 [gr-qc] · Zbl 1358.83076
[471] Sham, T.-H.; Lin, L.-M.; Leung, P. T., Radial oscillations and stability of compact stars in Eddington-inspired Born-infeld gravity, Phys. Rev. D, 86, Article 064015 pp. (2012), arXiv:1208.1314 [gr-qc]
[472] Sotani, H., Stellar oscillations in Eddington-inspired Born-infeld gravity, Phys. Rev. D, 89, Article 124037 pp. (2014), arXiv:1406.3097 [astro-ph]
[473] Mana, A.; Fatibene, L.; Ferraris, M., A further study on Palatini \(f ( \mathcal{R} )\)-theories for polytropic stars, J. Cosmol. Astropart. Phys., 2015, 040 (2015), arXiv:1505.06575 [gr-qc]
[474] Ehlers, J.; Pirani, F. A.E.; Schild, A., (Raifeartaigh, L. O., General Relativity (1972), Clarendon: Clarendon Oxford) · Zbl 0265.00002
[475] C.C. Dyer, C. Oliwa, The Swiss cheese cosmological model has no extrinsic curvature discontinuity: A comment on the paper by G.A. Baker Jr. arXiv: astro-ph/0004090.
[476] Wojnar, A., On stability of a neutron star system in Palatini gravity, Eur. Phys. J. C, 78, 421 (2018), arXiv:1712.01943 [gr-qc]
[477] Senovilla, J. M.M., Junction conditions for F(R)-gravity and their consequences, Phys. Rev. D, 88, Article 064015 pp. (2013), arXiv:1303.1408 [gr-qc]
[478] G.J. Olmo, D. Rubiera-Garcia, Junction conditions in Palatini \(f ( R )\) theories, arXiv:2007.04065 [gr-qc]. · Zbl 1370.83085
[479] Olmo, G. J., The gravity lagrangian according to solar system experiments, Phys. Rev. Lett., 95, Article 261102 pp. (2005), arXiv:0505101 [gr-qc]
[480] Allemandi, G.; Francaviglia, M.; Ruggiero, M. L.; Tartaglia, A., Post-Newtonian parameters from alternative theories of gravity, Gen. Relativity Gravitation, 37, 1891 (2005), arXiv:0506123 [gr-qc] · Zbl 1086.83028
[481] Ruggiero, M. L.; Iorio, L., Solar system planetary orbital motions and \(f ( R )\) theories of gravity, J. Cosmol. Astropart. Phys., 0701, 010 (2007), arXiv:0607093 [gr-qc]
[482] Barraco, D. E.; Hamity, V. H., Spherically symmetric solutions in f(R) theories of gravity obtained using the first order formalism, Phys. Rev. D, 62, Article 044027 pp. (2000)
[483] Allemandi, G.; Ruggiero, M. L., Constraining extended theories of gravity using solar system tests, Gen. Relativity Gravitation, 39, 1381 (2007), arXiv:0507027 [astro-ph] · Zbl 1181.83150
[484] Vollick, D. N., \( 1 / R\) Curvature corrections as the source of the cosmological acceleration, Phys. Rev. D, 68, Article 063510 pp. (2003), arXiv:astro-ph/0306630
[485] Flanagan, E. E., Palatini form of 1/R gravity, Phys. Rev. Lett., 92, Article 071101 pp. (2004), arXiv:gr-qc/0409068 · Zbl 1267.83088
[486] Vollick, D. N., On the viability of the Palatini form of 1/R gravity, Classical Quantum Gravity, 21, 3813 (2004), arXiv:gr-qc/0312041 · Zbl 1088.83015
[487] V. Reijonen, On white dwarfs and neutron stars in Palatini \(f ( R )\) gravity, arXiv:0912.0825 [gr-qc].
[488] Avelino, P. P., Eddington-inspired Born-infeld gravity: Nuclear physics constraints and the validity of the continuous fluid approximation, J. Cosmol. Astropart. Phys., 1211, 022 (2012), arXiv:1207.4730 [astro-ph.CO]
[489] Panotopoulos, G., Strange stars in \(f ( R )\) theories of gravity in the palatini formalism, Gen. Relativity Gravitation, 49, 69 (2017), arXiv:1704.04961 [gr-qc] · Zbl 1381.83106
[490] Bhatti, M. Z.; Yousaf, Z.; Zarnoor, M. L., Stability analysis of neutron stars in Palatini \(f ( R , T )\) gravity, Gen. Relativity Gravitation, 51, 144 (2019) · Zbl 1434.83092
[491] Sharif, M.; Yousaf, Z., Astrophys. Space Sci., 354, 481 (2014)
[492] Sharif, M.; Yousaf, Z., Dynamical instability of the charged expansion-free spherical collapse in \(f ( R )\) gravity, Phys. Rev. D, 88, Article 024020 pp. (2013)
[493] Olmo, G. J., Post-Newtonian constraints on \(f ( R )\) cosmologies in metric formalism, Phys. Rev. D, 72, Article 083505 pp. (2005), arXiv:0505135 [gr-qc]
[494] Darmois, G., Memorial Des Sciences Mathematiques (1927), Gauthier-Villars: Gauthier-Villars Paris · JFM 53.0816.03
[495] Sharif, M.; Yousaf, Z., Energy density inhomogeneities with polynomial \(f ( R )\) cosmology, Astrophys. Space Sci., 352, 321 (2014), arXiv:1501.03478 [gr-qc]
[496] Harrison, B. K.; Thorne, K. S.; Wakano, M.; Wheeler, J. A., Gravitation Theory and Gravitational Collapse (1965), University of Chicago Press: University of Chicago Press Chicago
[497] Pani, P.; Delsate, T.; Cardoso, V., Eddington-inspired Born-infeld gravity. phenomenology of non-linear gravity-matter coupling, Phys. Rev. D, 85, Article 084020 pp. (2012), arXiv:1201.2814 [gr-qc]
[498] Harko, T.; Lobo, F. S.N.; Mak, M. K.; Sushkov, S. V., Structure of neutron quark and exotic stars in Eddington-inspired Born-infeld gravity, Phys. Rev. D, 88, Article 044032 pp. (2013), arXiv:1305.6770 [gr-qc]
[499] Qauli, A. I.; Iqbal, M.; Sulaksono, A.; Ramadhan, H. S., Hyperons in neutron stars within eddington-inspired Born-infeld theory of gravity, Phys. Rev. D, 93, Article 104056 pp. (2016), arXiv:1605.01152 [astro-ph]
[500] Avelino, P. P., Eddington-inspired Born-infeld gravity: Astrophysical and cosmological constraints, Phys. Rev. D, 85, Article 104053 pp. (2012), arXiv:1201.2544 [astro-ph]
[501] A.I. Qauli, A. Sulaksono, H.S. Ramadhan, I. Husin, Compactness, masses and radii of compact stars within the Eddington-inspired Born-Infeld theory, arXiv:1710.03988 [gr-qc].
[502] Ozel, F.; Freire, P., Masses, radii, and equation of state of neutron stars, Ann. Rev. Astron. Astrophys., 54, 401 (2016), arXiv:1603.02698 [astro-ph]
[503] Rezzolla, L.; Most, E. R.; Weih, L. R., Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars, Astrophys. J., 852, L25 (2018), arXiv:1711.00314 [astro-ph]
[504] Prasetyo, I., Neutron stars in the braneworld within the eddington-inspired Born-infeld gravity, J. Cosmol. Astropart. Phys., 2018, 027 (2018), arXiv:1708.04837 [astro-ph] · Zbl 1527.85010
[505] Castro, L. B.; Alloy, M. D.; Menezes, D. P., Mass radius relation of compact stars in the braneworld, J. Cosmol. Astropart. Phys., 1408, 047 (2014), arXiv:1403.1099 [nucl-th]
[506] Danarianto, M. D.; Sulaksono, A., Overturning and apparent anisotropic pressure in Eddington-inspired Born-infeld theory on compact stars, Phys. Rev. D, 100, Article 064042 pp. (2019)
[507] Carriere, J.; Horowitz, C. J.; Piekarewicz, J., Low mass neutron stars and the equation of state of dense matter, Astrophys. J., 593, 463 (2003), arXiv:nucl-th/0211015
[508] Feng, W.-X.; Geng, C.-Q.; Luo, L.-W., L-w luo the buchdahl stability bound in Eddington-inspired Born-infeld gravity, Chin. Phys. C, 43, Article 083107 pp. (2019), arXiv:1810.06753 [gr-qc]
[509] Danila, B.; Harko, T.; Lobo, F. S.N.; Mak, M. K., Hybrid metric-palatini stars phys, Rev D, 95, Article 044031 pp. (2017), arXiv:1608.02783 [gr-qc]
[510] Chavanis, P. H.; Harko, T., Bose-Einstein condensate general relativistic stars, Phys. Rev. D, 86, Article 064011 pp. (2012), arXiv:1108.3986 [astro-ph]
[511] Wojnar, A., Polytropic stars in Palatini gravity, Eur. Phys. J. C, 79, 51 (2019), arXiv:1808.04188 [gr-qc]
[512] Sergyeyev, A.; Wojnar, A., The Palatini star: Exact solutions of the modified lane-Emden equation, Eur. Phys. J. C, 80, 313 (2020), arXiv:1901.10448 [gr-qc]
[513] Olmo, G. J.; Rubiera-Garcia, D.; Wojnar, A., Minimum main sequence mass in quadratic palatini \(f ( R )\) gravity, Phys. Rev. D, 100, Article 044020 pp. (2019), arXiv:1906.04629 [gr-qc]
[514] Banerjee, S.; Shankar, S.; Singh, T. P., Constraints on modified gravity models from white dwarfs, J. Cosmol. Astropart. Phys., 2017, 004 (2017), arXiv:1705.01048 [gr-qc] · Zbl 1515.83198
[515] Hicken, M.; Garnavich, P. M.; Prieto, J. L.; Blondin, S.; DePoy, D. L.; Kurshner, R. P.; Parrent, J., The luminous and carbon-rich supernova 2006GZ: A double degenerate merger?, Astrophys. J., 669, L17 (2006), arXiv:0709.1501 [astro-ph]
[516] Howell, D. A., The type Ia supernova SNLS-03D3bb from a super-chandrasekhar-mass white dwarf star, Nature, 443, 308 (2006), arXiv:0609616 [astro-ph]
[517] Scalzo, R. A., Nearby supernova factory observations of SN 2007IF: First total mass measurement of a super-Chandrasekhar-mass progenitor, Astrophys. J., 713, 1073 (2007), arXiv:1003.2217 [astro-ph]
[518] Silverman, J. M.; Ganeshalingam, M.; Li, W.; Filippenko, A. V.; Miller, A. A.; Poznanski, D., Fourteen months of observations of the possible super-chandrasekhar mass type ia supernova 2009dc, Mon. Not. R. Astron. Soc., 410, 585 (2011), arXiv:1003.2417 [astro-ph]
[519] Taubenberger, S., High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios, Mon. Not. R. Astron. Soc., 412, 2735 (2011), arXiv:1011.5665 [astro-ph]
[520] Holberg, J. B.; Oswalt, T. D.; Barstow, M. A., Observational constraints on the degenerate mass-radius relation, Astrophys. J., 143, 68 (2012), arXiv:1201.3822 [astro-ph]
[521] Wibisono, C.; Sulaksono, A., Information-entropic method: Stability of stars and modified gravity theories, Internat. J. Modern Phys. D, 27, Article 1850051 pp. (2018), arXiv:1712.07587 [gr-qc]
[522] Koyama, K., Cosmological tests of modified gravity, Rep. Progr. Phys., 79, Article 046902 pp. (2016), arXiv:1504.04623 [astro-ph.CO]
[523] Frusciante, N.; Perenon, L., Effective field theory of dark energy: a review, Phys. Rep., 857, 1 (2020), arXiv:1907.03150 [astro-ph.CO] · Zbl 1475.83134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.