×

Two-grid finite element methods for nonlinear time-fractional parabolic equations. (English) Zbl 07525417

Summary: In this paper, an efficient two-grid finite element algorithm is proposed for solving time-fractional nonlinear parabolic equations. We first obtain the stability and error estimates of the standard fully discrete L1 finite element method by using the Grönwall inequalities in \(L^2\) and \(H^1\) norms. Based on the standard method, we design the corresponding two-grid algorithm and analyze its stability and error estimates. It is shown that this algorithm is as stable as the standard fully discrete finite element algorithm, and can achieve the same accuracy as the standard algorithm if the coarse grid size \(H\) and the fine grid size \(h\) satisfy \(H=O\left (h^{\frac{r-1}{r}}\right)(r\ge 1+\frac{d}{2},\) where \(d = 1,2,3)\). The theoretical results are illustrated by applying the proposed method to an numerical example.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

iFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alikhanov, AA, A priori estimates for solutions of boundary value problems for fractional-order equations, Differ. Equ., 46, 660-666 (2010) · Zbl 1208.35161 · doi:10.1134/S0012266110050058
[2] Al-Maskari, M.; Karaa, S., Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data, SIAM J. Numer. Anal., 57, 3, 1524-1544 (2019) · Zbl 1422.65246 · doi:10.1137/18M1189750
[3] Baffet, D.; Hesthaven, JS, A kernel compression scheme for fractional differential equations, SIAM J. Numer. Anal., 55, 2, 496-520 (2017) · Zbl 1359.65106 · doi:10.1137/15M1043960
[4] Bhambhani, V.; Han, Yd; Mukhopadhyay, S.; Luo, Y.; Chen, YQ, Hardware-in-the-loop experimental study on a fractional order networked control system testbed, Commun. Nonlinear. Sci., 15, 9, 2486-2496 (2010) · doi:10.1016/j.cnsns.2009.10.010
[5] Chen, L.: iFEM: An integrated finite element methods package in MATLAB Technical Report University of California at Irvine (2009)
[6] Chen, C.; Liu, W., Two-grid finite volume element methods for semilinear parabolic problems, Appl. Numer. Math., 60, 10-18 (2010) · Zbl 1193.65161 · doi:10.1016/j.apnum.2009.08.004
[7] Chen, H.; Stynes, M., Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem, J. Sci. Comput., 79, 624-647 (2019) · Zbl 1419.65010 · doi:10.1007/s10915-018-0863-y
[8] Chen, H.; Stynes, M., A discrete comparison principle for the time-fractional diffusion equation, Comput. Math. Appl., 80, 5, 917-922 (2020) · Zbl 1447.65018 · doi:10.1016/j.camwa.2020.04.018
[9] Chen, S.; Shen, J.; Zhang, ZM; Zhou, Z., A spectrally accurate approximation to subdiffusion equations using the log orthogonal functions, SIAM J. Sci. Comput., 42, 2, A849-A877 (2020) · Zbl 1434.65291 · doi:10.1137/19M1281927
[10] Chen, LP; Chen, YP, Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods, J. Sci. Comput., 49, 3, 1238-1256 (2011) · Zbl 1322.65094 · doi:10.1007/s10915-011-9469-3
[11] Chandru, M.; Das, P.; Ramos, H., Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data, Math. Methods Appl. Sci., 41, 14, 5359-5387 (2018) · Zbl 1403.35024 · doi:10.1002/mma.5067
[12] Chandru, M.; Prabha, T.; Das, P.; Shanthi, V., A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms, Differ. Equat. Dyn. Sys., 27, 1, 91-112 (2019) · Zbl 1415.35013 · doi:10.1007/s12591-017-0385-3
[13] Dai, X.; Cheng, X., A two-grid method based on Newton iteration for the Navier-Stokes equations, J. Comput. Appl. Math., 220, 566-573 (2008) · Zbl 1142.76030 · doi:10.1016/j.cam.2007.09.002
[14] Dawson, CN; Wheeler, MF, Two-grid methods for mixed finite element approximations of nonlinear parabolic equations, Contemp. Math., 180, 191-203 (1994) · Zbl 0817.65080 · doi:10.1090/conm/180/01971
[15] Dawson, CN; Wheeler, MF; Woodward, CS, A two-grid finite difference schemefor nonlinear parabolic equations, SIAM J. Numer. Anal., 35, 2, 435-452 (1998) · Zbl 0927.65107 · doi:10.1137/S0036142995293493
[16] Das, P., Rana, S., Ramos, H.: On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis. J. Comput. Appl. Math., 113116 (2020) · Zbl 1481.65265
[17] Das, P.; Rana, S.; Ramos, H., A perturbation-based approach for solving fractional-order Volterra-Fredholm integro differential equations and its convergence analysis, Int. J. Comput. Math., 97, 10, 1994-2014 (2020) · Zbl 1492.65357 · doi:10.1080/00207160.2019.1673892
[18] Das, P.; Rana, S.; Ramos, H., Homotopy perturbation method for solving Caputo-type fractional-order Volterra-Fredholm integro-differential equations, Comp. Math. Methods., 1, 5, e1047 (2019) · doi:10.1002/cmm4.1047
[19] Das, P.; Rana, S.; Vigo-Aguiar, J., Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature, Appl. Numer. Math., 148, 79-97 (2020) · Zbl 1448.65075 · doi:10.1016/j.apnum.2019.08.028
[20] Das, P.; Natesan, S., Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems, Appl. Math. Comput., 249, 265-277 (2014) · Zbl 1338.65194
[21] Das, P., Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems, J. Comput. Appl. Math., 290, 16-25 (2015) · Zbl 1321.65126 · doi:10.1016/j.cam.2015.04.034
[22] Das, P.; Vigo-Aguiar, J., Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter, J. Comput. Appl. Math., 354, 533-544 (2019) · Zbl 1415.65166 · doi:10.1016/j.cam.2017.11.026
[23] Das, P., An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh, Numer. Algorithms., 81, 2, 465-487 (2019) · Zbl 1454.65050 · doi:10.1007/s11075-018-0557-4
[24] Das, P.; Mehrmann, V., Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters, BIT Numer. Math., 56, 1, 51-76 (2016) · Zbl 1341.65031 · doi:10.1007/s10543-015-0559-8
[25] Das, P., A higher order difference method for singularly perturbed parabolic partial differential equations, J. Differ. Equ. Appl., 24, 3, 452-477 (2018) · Zbl 1427.65156 · doi:10.1080/10236198.2017.1420792
[26] Rahmani Fazli, H.; Hassani, F.; Ebadian, A.; Khajehnasiri, AA, National economies in state-space of fractional-order financial system, Afrika Matematika., 27, 3-4 (2016) · Zbl 1405.91438 · doi:10.1007/s13370-015-0361-4
[27] Girault, V.; Lions, JL, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra, Port. Math., 58, 25-57 (2001) · Zbl 0997.76043
[28] Hu, X.; Cheng, X., Acceleration of a two-grid method for eigenvalue problems, Math. Comput., 80, 1287-1301 (2011) · Zbl 1232.65141 · doi:10.1090/S0025-5718-2011-02458-0
[29] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[30] He, Y.; Li, K., Two-level stabilized finite element methods for the Steady Navier-Stokes problem, Computing, 74, 337-351 (2005) · Zbl 1099.65111 · doi:10.1007/s00607-004-0118-7
[31] Huang, CB; Stynes, M., Optimal H1 spatial convergence of a fully discrete finite element method for the time-fractional Allen-Cahn equation, Adv. Comput. Math., 46, 1-20 (2020) · Zbl 1454.65118 · doi:10.1007/s10444-020-09758-2
[32] Huang, CB; Stynes, M., Optimal spatial H1-norm analysis of a finite element method for a time-fractional diffusion equation, J. Comp. Appl. Math., 367, 112435 (2020) · Zbl 1428.65042 · doi:10.1016/j.cam.2019.112435
[33] Huang, CB; Stynes, M., A direct discontinuous Galerkin method for a time-fractional diffusion equation with a Robin boundary condition, Appl. Numer. Math., 135, 15-29 (2019) · Zbl 1404.65171 · doi:10.1016/j.apnum.2018.08.006
[34] Jiang, S.; Zhang, J.; Zhang, Q.; Zhang, Z., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21, 3, 650-678 (2017) · Zbl 1488.65247 · doi:10.4208/cicp.OA-2016-0136
[35] Jin, B.; Lazarov, R.; Zhou, Z., Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput., 38, A146-A170 (2016) · Zbl 1381.65082 · doi:10.1137/140979563
[36] Jin, B.; Li, B.; Zhou, Z., Numerical analysis of nonlinear subdiffusion equations, SIAM J. Numer. Anal., 56, 1-23 (2018) · Zbl 1422.65228 · doi:10.1137/16M1089320
[37] Jin, B.; Lazarov, R.; Zhou, Z., Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview, Comput. Methods Appl. Mech. Engrg., 346, 332-358 (2019) · Zbl 1440.65138 · doi:10.1016/j.cma.2018.12.011
[38] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Application of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[39] Kumar, K., Podil, P.C., Das, P., Ramos, H.: A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems, Math. Methods Appl. Sci. (2021) · Zbl 1512.65180
[40] Liu, W.; Rui, HX; Guo, H., A two-grid method with expanded mixed element for nonlinear reaction-diffusion equations, Acta. Math. Appl. Sin-e., 27, 3, 495-502 (2011) · Zbl 1304.65220 · doi:10.1007/s10255-011-0086-6
[41] Layton, W.; Tobiska, L., A two-level method with backtracking for the Navier-Stokes equations, SIAM J. Numer. Anal., 35, 2035-2054 (1998) · Zbl 0913.76050 · doi:10.1137/S003614299630230X
[42] Li, DF; Liao, HL; Sun, WW; Wang, JL; Zhang, JW, Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, Commu. Comput. Phys., 24, 1, 86-103 (2018) · Zbl 1488.65431
[43] Li, DF; Zhang, JW; Zhang, Z., Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations, J. Sci. Comput., 76, 848-866 (2018) · Zbl 1397.65173 · doi:10.1007/s10915-018-0642-9
[44] Li, DF; Wu, C.; Zhang, Z., Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80, 403-419 (2019) · Zbl 1418.65179 · doi:10.1007/s10915-019-00943-0
[45] Li, J., A fast time stepping method for evaluating fractional integrals, SIAM J. Sci. Comput., 31, 4696-4714 (2010) · Zbl 1208.26014 · doi:10.1137/080736533
[46] Li, LL; Li, DF, Exact solutions and numerical study of time fractional Burgers’ equations, Appl. Math. Lett., 100, 106011 (2020) · Zbl 1427.35330 · doi:10.1016/j.aml.2019.106011
[47] Li, QF; Chen, YP; Huang, YQ; Wang, Y., Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method, Appl. Numer. Math., 157, 38-54 (2020) · Zbl 1446.65115 · doi:10.1016/j.apnum.2020.05.024
[48] Li, XL; Rui, HX, A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation, J. Sci. Comput., 72, 863-891 (2017) · Zbl 1377.65106 · doi:10.1007/s10915-017-0380-4
[49] Liao, HL; Li, D.; Zhang, J., Sharp error estimate of nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56, 1112-1133 (2018) · Zbl 1447.65026 · doi:10.1137/17M1131829
[50] Liao, HL; McLean, W.; Zhang, J., A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 57, 1, 218-237 (2018) · Zbl 1414.65008 · doi:10.1137/16M1175742
[51] Liao, H.; Yan, YG; Zhang, JW, Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations, J. Sci. Comput., 80, 1-25 (2019) · Zbl 1450.65078 · doi:10.1007/s10915-019-00927-0
[52] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552 (2007) · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[53] Marion, M.; Xu, J., Error estimates on a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Numer. Anal., 32, 1170-1184 (1995) · Zbl 0853.65092 · doi:10.1137/0732054
[54] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional Dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[55] Metzler, R.; Klafter, J., The restaurant at the end of the random walk:recent developments in the description of anomalous transport by fractional dynamics, J. Phys. Math. Gen., 37, 87, 8161-8208 (2004) · Zbl 1075.82018
[56] Magin, RL, Fractional Calculus in Bioengineering (2006), Danbury: Begell House Publishers, Danbury
[57] Podlubny, I., Geometric and Physical interpretation of fractional intergration and fractional differention, Fract. Calc. Appl. Anal., 5, 4, 367-386 (2002) · Zbl 1042.26003
[58] Podlubny, I., Fractional Differential Equations Mathematics in Science and Engineering (1999), San Diego: Academic Press Inc, San Diego · Zbl 0924.34008
[59] Ren, J.; Liao, HL; Zhang, J.; Zhang, Z., Sharp H1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems, Numer. Algor., 83, 3, 1223-1248 (2019) · Zbl 1440.65092
[60] Ren, J.; Liao, HL; Zhang, Z., Superconvergence error estimate of a finite element method on nonuniform time meshes for reaction-subdiffusion equations, J. Sci. Comput., 84, 38 (2020) · Zbl 1452.65247 · doi:10.1007/s10915-020-01290-1
[61] Rana, S., Das, P.: Theoretical prospects of the solutions of fractional order weakly singular volterra integro differential equations and their approximations with convergence analysis authorea preprints (2020)
[62] Stynes, M.; O’Riordan, E.; Gracia, JL, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 1057-1079 (2017) · Zbl 1362.65089 · doi:10.1137/16M1082329
[63] Stynes, M.; O’Riordan, E.; Gracia, JL, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 2, 1057-1079 (2017) · Zbl 1362.65089 · doi:10.1137/16M1082329
[64] Shakti, D., Mohapatra, J., Das, P., Vigo-Aguiar, J.: A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms, J. Comput. Appl. Math., 113167 (2020) · Zbl 1503.65184
[65] Thomée, V., Galerkin finite element methods for parabolic problems (1997), New York: Springer-Verlag, New York · Zbl 0884.65097 · doi:10.1007/978-3-662-03359-3
[66] Utnes, T., Two-grid finite element formulations of the incompressible Navier-Stokes equation, Commun. Numer. Meth. En., 24, 675-684 (1997) · Zbl 0883.76052 · doi:10.1002/(SICI)1099-0887(199708)13:8<675::AID-CNM98>3.0.CO;2-N
[67] Wang, WS, Long-time behavior of the two-grid finite element method for fully discrete semilinear evolution equations with positive memory, J. Comput. Appl. Math., 250, 161-174 (2013) · Zbl 1285.65064 · doi:10.1016/j.cam.2013.03.006
[68] Wang, WS; Chen, L.; Zhou, J., Postprocessing mixed finite element methods for solving Cahn-Hilliard equation: methods and error analysis, J. Sci. Comput., 67, 2, 724-746 (2016) · Zbl 1341.65040 · doi:10.1007/s10915-015-0101-9
[69] Wang, WS; Hong, Q., Two-grid economical algorithms for parabolic integro-differential equations with nonlinear memory, Appl. Numer, Math., 142, 28-46 (2019) · Zbl 1426.65185 · doi:10.1016/j.apnum.2019.02.001
[70] Wu, L.; Allen, MB, Two-grid methods for mixed finite element solution of coupled reaction-diffusion systems, Numer. Meth. Part. D. E., 15, 5, 589-604 (2000) · Zbl 0942.65106 · doi:10.1002/(SICI)1098-2426(199909)15:5<589::AID-NUM6>3.0.CO;2-W
[71] Xu, Q.; Hesthaven, JS; Chen, F., A parareal method for time-fractional differential equations, J. Comp. Phys., 293, C, 173-183 (2015) · Zbl 1349.65220 · doi:10.1016/j.jcp.2014.11.034
[72] Xu, J., Two-grid discretization techniques for linear and non-linear PDEs, SIAM J. Numer. Anal., 33, 1759-1777 (1996) · Zbl 0860.65119 · doi:10.1137/S0036142992232949
[73] Xu, J., A novel two-grid method for semilinear equations, SIAM J. Sci. Comput., 15, 231-237 (1994) · Zbl 0795.65077 · doi:10.1137/0915016
[74] Xu, J.: Some two-grid finite element methods, Tech. Report P.S.U (1992)
[75] Xu, J., A new class of iterative methods for nonselfadjoint or indefinite elliptic problems, SIAM J. Numer. Anal., 29, 303-319 (1992) · Zbl 0756.65050 · doi:10.1137/0729020
[76] Xu, J.; Zhou, A., A two-grid discretization scheme for eigenvalue problems, Math. Comput., 70, 17-25 (2001) · Zbl 0959.65119 · doi:10.1090/S0025-5718-99-01180-1
[77] Xu, J.; Zhou, A., Local and parallel finite element algorithms for eigenvalue problems, Acta. Math. Appl. Sin. Engl. Ser., 18, 185-200 (2002) · Zbl 1015.65060 · doi:10.1007/s102550200048
[78] Yuste, SB; Acedo, L., An explicit finite difference method and a new Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer Anal., 42, 1862-1874 (2005) · Zbl 1119.65379 · doi:10.1137/030602666
[79] Zeng, F.; Li, C.; Liu, F.; Turner, I., The use of finite difference/element approaches for solving the time fractional subdiffusion equations, SIAM J. Sci. Comput., 35, 2796-3000 (2013) · Zbl 1292.65096 · doi:10.1137/130910865
[80] Zhang, YN; Sun, ZZ; Liao, HL, Finite difference methods for the time fractional diffusion equation on nonuniform meshes, J. Comput. Phys., 265, 195-210 (2014) · Zbl 1349.65359 · doi:10.1016/j.jcp.2014.02.008
[81] Zhou, J.; Chen, L.; Huang, YQ; Wang, WS, An efficient two-grid scheme for the Cahn-Hilliard equation, Commun. Comput. Phys., 17, 1, 127-145 (2015) · Zbl 1373.76111 · doi:10.4208/cicp.231213.100714a
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.