×

The real radiation antenna function for \( S \to Q\bar{Q}q\bar{q} \) at NNLO QCD. (English) Zbl 1298.81368

Summary: As a first step towards the application of the antenna subtraction formalism to NNLO QCD reactions with massive quarks, we determine the real radiation antenna function and its integrated counterpart for reactions of the type \( S \to Q\bar{Q}q\bar{q} \), where \(S\) denotes an uncolored initial state and \(Q\), \(q\) a massive and massless quark, respectively. We compute the corresponding integrated antenna function in terms of harmonic polylogarithms. As an application and check of our results we calculate the contribution proportional to \(\alpha_{s}^{2}e_{Q}^{2}N_{f}\) to the inclusive heavy-quark pair production cross section in \(e^{+}e^{-}\) annihilation.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81U35 Inelastic and multichannel quantum scattering
11G55 Polylogarithms and relations with \(K\)-theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [hep-ph/9605323] [SPIRES]. · doi:10.1016/S0550-3213(96)00589-5
[2] S. Catani, S. Dittmaier and Z. Trocsanyi, One loop singular behavior of QCD and SUSY QCD amplitudes with massive partons, Phys. Lett.B 500 (2001) 149 [hep-ph/0011222] [SPIRES]. · Zbl 0972.81667
[3] L. Phaf and S. Weinzierl, Dipole formalism with heavy fermions, JHEP04 (2001) 006 [hep-ph/0102207] [SPIRES]. · doi:10.1088/1126-6708/2001/04/006
[4] S. Catani, S. Dittmaier, M. H. Seymour and Z. Trocsanyi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys.B 627 (2002) 189 [hep-ph/0201036] [SPIRES]. · Zbl 0990.81140 · doi:10.1016/S0550-3213(02)00098-6
[5] Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four-jet observables in electron positron annihilation, Phys. Rev.D 59 (1999) 014020 [Erratum ibid.D 62 (2000) 099902] [hep-ph/9806317] [SPIRES].
[6] J.M. Campbell, R.K. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev.D 70 (2004) 094012 [hep-ph/0408158] [SPIRES].
[7] M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP08 (2009) 085 [arXiv:0905.0883] [SPIRES]. · doi:10.1088/1126-6708/2009/08/085
[8] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist: pp → ttbb, JHEP09 (2009) 109 [arXiv:0907.4723] [SPIRES]. · doi:10.1088/1126-6708/2009/09/109
[9] R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP06 (2010) 086 [arXiv:1004.2905] [SPIRES]. · Zbl 1288.81145 · doi:10.1007/JHEP06(2010)086
[10] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J.C 53 (2008) 501 [arXiv:0709.2881] [SPIRES]. · doi:10.1140/epjc/s10052-007-0495-0
[11] M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
[12] K. Hasegawa, S. Moch and P. Uwer, AutoDipole — Automated generation of dipole subtraction terms, Comput. Phys. Commun.181 (2010) 1802 [arXiv:0911.4371] [SPIRES]. · Zbl 1219.81244 · doi:10.1016/j.cpc.2010.06.044
[13] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [SPIRES]. · doi:10.1016/0550-3213(96)00110-1
[14] Z. Nagy and Z. Trócsányi, Calculation of QCD jet cross sections at next-to-leading order, Nucl. Phys.B 486 (1997) 189 [hep-ph/9610498] [SPIRES]. · doi:10.1016/S0550-3213(96)00657-8
[15] S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys.B 507 (1997) 295 [hep-ph/9706545] [SPIRES]. · doi:10.1016/S0550-3213(97)00574-9
[16] C.-H. Chung, M. Krämer and T. Robens, An alternative subtraction scheme for next-to-leading order QCD calculations, arXiv:1012.4948 [SPIRES]. · Zbl 1298.81374
[17] J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys.B 527 (1998) 264 [hep-ph/9710255] [SPIRES]. · doi:10.1016/S0550-3213(98)00295-8
[18] S. Catani, The singular behaviour of QCD amplitudes at two-loop order, Phys. Lett.B 427 (1998) 161 [hep-ph/9802439] [SPIRES].
[19] S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett.B 446 (1999) 143 [hep-ph/9810389] [SPIRES].
[20] S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys.B 570 (2000) 287 [hep-ph/9908523] [SPIRES]. · doi:10.1016/S0550-3213(99)00778-6
[21] S. Catani and M. Grazzini, The soft-gluon current at one-loop order, Nucl. Phys.B 591 (2000) 435 [hep-ph/0007142] [SPIRES]. · doi:10.1016/S0550-3213(00)00572-1
[22] Z. Bern, V. Del Duca and C.R. Schmidt, The infrared behavior of one-loop gluon amplitudes at next-to-next-to-leading order, Phys. Lett.B 445 (1998) 168 [hep-ph/9810409] [SPIRES].
[23] Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, T he infrared behavior of one-loop QCD amplitudes at next-to-next-to-leading order, Phys. Rev.D 60 (1999) 116001 [hep-ph/9903516] [SPIRES].
[24] D.A. Kosower, Multiple singular emission in gauge theories, Phys. Rev.D 67 (2003) 116003 [hep-ph/0212097] [SPIRES].
[25] G. Heinrich, A numerical method for NNLO calculations, Nucl. Phys. Proc. Suppl.116 (2003) 368 [hep-ph/0211144] [SPIRES]. · Zbl 1037.81585 · doi:10.1016/S0920-5632(03)80201-3
[26] T. Binoth and G. Heinrich, Numerical evaluation of multi-loop integrals by sector decomposition, Nucl. Phys.B 680 (2004) 375 [hep-ph/0305234] [SPIRES]. · Zbl 1043.81630 · doi:10.1016/j.nuclphysb.2003.12.023
[27] T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys.B 693 (2004) 134 [hep-ph/0402265] [SPIRES]. · Zbl 1151.81352 · doi:10.1016/j.nuclphysb.2004.06.005
[28] C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev.D 69 (2004) 076010 [hep-ph/0311311] [SPIRES].
[29] G. Heinrich, The sector decomposition approach to real radiation at NNLO, Nucl. Phys. Proc. Suppl.157 (2006) 43 [hep-ph/0601232] [SPIRES]. · doi:10.1016/j.nuclphysbps.2006.03.034
[30] D.A. Kosower, Antenna factorization of gauge-theory amplitudes, Phys. Rev.D 57 (1998) 5410 [hep-ph/9710213] [SPIRES].
[31] D.A. Kosower, Antenna factorization in strongly-ordered limits, Phys. Rev.D 71 (2005) 045016 [hep-ph/0311272] [SPIRES].
[32] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [SPIRES]. · doi:10.1088/1126-6708/2005/09/056
[33] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett.B 612 (2005) 36 [hep-ph/0501291] [SPIRES].
[34] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett.B 612 (2005) 49 [hep-ph/0502110] [SPIRES].
[35] C. Duhr and F. Maltoni, Antenna functions from MHV rules, JHEP11 (2008) 002 [arXiv:0808.3319] [SPIRES]. · doi:10.1088/1126-6708/2008/11/002
[36] S. Weinzierl, Subtraction terms at NNLO, JHEP03 (2003) 062 [hep-ph/0302180] [SPIRES]. · doi:10.1088/1126-6708/2003/03/062
[37] S. Weinzierl, Subtraction terms for one-loop amplitudes with one unresolved parton, JHEP07 (2003) 052 [hep-ph/0306248] [SPIRES]. · doi:10.1088/1126-6708/2003/07/052
[38] S. Frixione and M. Grazzini, Subtraction at NNLO, JHEP06 (2005) 010 [hep-ph/0411399] [SPIRES]. · doi:10.1088/1126-6708/2005/06/010
[39] G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly-and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP06 (2005) 024 [hep-ph/0502226] [SPIRES]. · doi:10.1088/1126-6708/2005/06/024
[40] G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP01 (2007) 052 [hep-ph/0609043] [SPIRES]. · doi:10.1088/1126-6708/2007/01/052
[41] G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP01 (2007) 070 [hep-ph/0609042] [SPIRES]. · doi:10.1088/1126-6708/2007/01/070
[42] G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms I, JHEP08 (2008) 042 [arXiv:0807.0509] [SPIRES]. · doi:10.1088/1126-6708/2008/08/042
[43] U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trocsanyi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. I, JHEP09 (2008) 107 [arXiv:0807.0514] [SPIRES]. · doi:10.1088/1126-6708/2008/09/107
[44] P. Bolzoni, S.-O. Moch, G. Somogyi and Z. Trocsanyi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. II, JHEP08 (2009) 079 [arXiv:0905.4390] [arXiv:0905.4390]. · doi:10.1088/1126-6708/2009/08/079
[45] G. Somogyi, Subtraction with hadronic initial states: an NNLO-compatible scheme, JHEP05 (2009) 016 [arXiv:0903.1218] [SPIRES]. · doi:10.1088/1126-6708/2009/05/016
[46] P. Bolzoni, G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP01 (2011) 059 [arXiv:1011.1909] [SPIRES]. · Zbl 1214.81293 · doi:10.1007/JHEP01(2011)059
[47] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [SPIRES]. · doi:10.1103/PhysRevLett.98.222002
[48] M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett.B 693 (2010) 259 [arXiv:1005.0274] [SPIRES].
[49] M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, arXiv:1101.0642 [SPIRES]. · Zbl 1215.81117
[50] C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett.93 (2004) 262002 [hep-ph/0409088] [SPIRES]. · doi:10.1103/PhysRevLett.93.262002
[51] K. Melnikov and F. Petriello, The W boson production cross section at the LHC through O(αs2), Phys. Rev. Lett.96 (2006) 231803 [hep-ph/0603182] [SPIRES]. · doi:10.1103/PhysRevLett.96.231803
[52] S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett.103 (2009) 082001 [arXiv:0903.2120] [SPIRES]. · doi:10.1103/PhysRevLett.103.082001
[53] S. Catani, G. Ferrera and M. Grazzini, W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD, JHEP05 (2010) 006 [arXiv:1002.3115] [SPIRES]. · doi:10.1007/JHEP05(2010)006
[54] C. Anastasiou, K. Melnikov and F. Petriello, Real radiation at NNLO: e+e− → 2 jets through O(αs2), Phys. Rev. Lett.93 (2004) 032002 [hep-ph/0402280] [SPIRES]. · doi:10.1103/PhysRevLett.93.032002
[55] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Infrared structure of e+e− → 2 jets at NNLO, Nucl. Phys.B 691 (2004) 195 [hep-ph/0403057] [SPIRES]. · doi:10.1016/j.nuclphysb.2004.05.017
[56] A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Infrared structure of e+e− → 3 jets at NNLO, JHEP11 (2007) 058 [arXiv:0710.0346] [SPIRES]. · doi:10.1088/1126-6708/2007/11/058
[57] A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, NNLO corrections to event shapes in e+e−annihilation, JHEP12 (2007) 094 [arXiv:0711.4711] [SPIRES]. · doi:10.1088/1126-6708/2007/12/094
[58] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett.99 (2007) 132002 [arXiv:0707.1285] [SPIRES]. · doi:10.1103/PhysRevLett.99.132002
[59] A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Jet rates in electron-positron annihilation at O(αs3) in QCD, Phys. Rev. Lett.100 (2008) 172001 [arXiv:0802.0813] [SPIRES]. · doi:10.1103/PhysRevLett.100.172001
[60] S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett.101 (2008) 162001 [arXiv:0807.3241] [SPIRES]. · doi:10.1103/PhysRevLett.101.162001
[61] S. Weinzierl, T he infrared structure of e+e− → 3 jets at NNLO reloaded, JHEP07 (2009) 009 [arXiv:0904.1145] [SPIRES]. · doi:10.1088/1126-6708/2009/07/009
[62] A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP04 (2007) 016 [hep-ph/0612257] [SPIRES]. · doi:10.1088/1126-6708/2007/04/016
[63] A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP01 (2010) 118 [arXiv:0912.0374] [SPIRES]. · Zbl 1269.81194 · doi:10.1007/JHEP01(2010)118
[64] E.W. NigelGlover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP06 (2010) 096 [arXiv:1003.2824] [SPIRES]. · Zbl 1288.81147 · doi:10.1007/JHEP06(2010)096
[65] R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP02 (2011) 098 [arXiv:1011.6631] [SPIRES]. · Zbl 1294.81270 · doi:10.1007/JHEP02(2011)098
[66] A. Gehrmann-De Ridder and M. Ritzmann, NLO antenna subtraction with massive fermions, JHEP07 (2009) 041 [arXiv:0904.3297] [SPIRES]. · doi:10.1088/1126-6708/2009/07/041
[67] G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP04 (2011) 063 [arXiv:1102.2443] [SPIRES]. · doi:10.1007/JHEP04(2011)063
[68] W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form factors: the vector contributions, Nucl. Phys.B 706 (2005) 245 [hep-ph/0406046] [SPIRES]. · Zbl 1137.81380 · doi:10.1016/j.nuclphysb.2004.10.059
[69] J. Gluza, A. Mitov, S. Moch and T. Riemann, The QCD form factor of heavy quarks at NNLO, JHEP07 (2009) 001 [arXiv:0905.1137] [SPIRES]. · doi:10.1088/1126-6708/2009/07/001
[70] W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form factors: axial vector contributions, Nucl. Phys.B 712 (2005) 229 [hep-ph/0412259] [SPIRES]. · Zbl 1109.81370 · doi:10.1016/j.nuclphysb.2005.01.035
[71] W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form factors: anomaly contributions, Nucl. Phys.B 723 (2005) 91 [hep-ph/0504190] [SPIRES]. · doi:10.1016/j.nuclphysb.2005.06.025
[72] W. Bernreuther et al., Decays of scalar and pseudoscalar Higgs bosons into fermions: two-loop QCD corrections to the Higgs-quark-antiquark amplitude, Phys. Rev.D 72 (2005) 096002 [hep-ph/0508254] [SPIRES].
[73] A. Brandenburg and P. Uwer, Next-to-leading order QCD corrections and massive quarks in e+e− → 3 jets, Nucl. Phys.B 515 (1998) 279 [hep-ph/9708350] [SPIRES]. · doi:10.1016/S0550-3213(97)00790-6
[74] P. Nason and C. Oleari, Next-to-leading-order corrections to the production of heavy-flavour jets in e+e−collisions, Nucl. Phys.B 521 (1998) 237 [hep-ph/9709360] [SPIRES]. · doi:10.1016/S0550-3213(98)00125-4
[75] G. Rodrigo, M.S. Bilenky and A. Santamaria, Quark-mass effects for jet production in e+e−collisions at the next-to-leading order: results and applications, Nucl. Phys.B 554 (1999) 257 [hep-ph/9905276] [SPIRES]. · doi:10.1016/S0550-3213(99)00293-X
[76] W. Wetzel and W. Bernreuther, The effect of massive quarks on the electromagnetic vacuum polarization by massless quarks, Phys. Rev.D 24 (1981) 2724 [SPIRES].
[77] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys.B 192 (1981) 159 [SPIRES]. · doi:10.1016/0550-3213(81)90199-1
[78] C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys.B 646 (2002) 220 [hep-ph/0207004] [SPIRES]. · doi:10.1016/S0550-3213(02)00837-4
[79] A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four-particle phase space integrals in massless QCD, Nucl. Phys.B 682 (2004) 265 [hep-ph/0311276] [SPIRES]. · Zbl 1045.81558 · doi:10.1016/j.nuclphysb.2004.01.023
[80] R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys.1 (1960) 429 [SPIRES]. · Zbl 0122.22605 · doi:10.1063/1.1703676
[81] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP07 (2004) 046 [hep-ph/0404258] [SPIRES]. · doi:10.1088/1126-6708/2004/07/046
[82] S. Laporta, High-precision calculation of multi-loop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [SPIRES]. · Zbl 0973.81082
[83] A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP10 (2008) 107 [arXiv:0807.3243] [SPIRES]. · Zbl 1245.81033 · doi:10.1088/1126-6708/2008/10/107
[84] A.P. Prudnikov, Y.A. Brychkov and O.I. Marichev, Integrals and series: more special functions, volume 3, Taylor and Francis Ltd., U.S.A. (1989).
[85] T. Huber and D. Maître, HypExp2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Commun.178 (2008) 755 [arXiv:0708.2443] [SPIRES]. · Zbl 1196.81024 · doi:10.1016/j.cpc.2007.12.008
[86] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [SPIRES]. · Zbl 0951.33003
[87] T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun.141 (2001) 296 [hep-ph/0107173] [SPIRES]. · Zbl 0991.65022 · doi:10.1016/S0010-4655(01)00411-8
[88] A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett.B 254 (1991) 158 [SPIRES].
[89] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim.A 110 (1997) 1435 [hep-th/9711188] [SPIRES].
[90] T. Gehrmann and E. Remiddi, Differential equations for two-loop four-point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [SPIRES]. · Zbl 1071.81089 · doi:10.1016/S0550-3213(00)00223-6
[91] M. Argeri and P. Mastrolia, Feynman Diagrams and differential equations, Int. J. Mod. Phys.A 22 (2007) 4375 [arXiv:0707.4037] [SPIRES]. · Zbl 1141.81325
[92] D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [SPIRES]. · Zbl 1196.68330 · doi:10.1016/j.cpc.2005.10.008
[93] G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys.27 (1978) 192 [SPIRES]. · Zbl 0377.65010 · doi:10.1016/0021-9991(78)90004-9
[94] A.H. Hoang, J.H. Kuhn and T. Teubner, Radiation of light fermions in heavy fermion production, Nucl. Phys.B 452 (1995) 173 [hep-ph/9505262] [SPIRES]. · doi:10.1016/0550-3213(95)00308-F
[95] D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun.161 (2004) 76 [hep-ph/0309015] [SPIRES]. · doi:10.1016/j.cpc.2004.05.001
[96] J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun.83 (1994) 45 [SPIRES]. · Zbl 1114.68598 · doi:10.1016/0010-4655(94)90034-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.