×

Coinvariant algebras and fake degrees for spin Weyl groups of classical type. (English) Zbl 1342.20012

Summary: The coinvariant algebra of a Weyl group plays a fundamental role in several areas of mathematics. The fake degrees are the graded multiplicities of the irreducible modules of a Weyl group in its coinvariant algebra, and they were computed by Steinberg, Lusztig and Beynon-Lusztig. In this paper we formulate a notion of spin coinvariant algebra for every Weyl group. Then we compute all the spin fake degrees for each classical Weyl group, which are by definition the graded multiplicities of the simple modules of a spin Weyl group in the spin coinvariant algebra. The spin fake degrees for the exceptional Weyl groups are given in a sequel.

MSC:

20C25 Projective representations and multipliers
05E10 Combinatorial aspects of representation theory
20F55 Reflection and Coxeter groups (group-theoretic aspects)
13A50 Actions of groups on commutative rings; invariant theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1017/CBO9780511623646 · doi:10.1017/CBO9780511623646
[2] DOI: 10.1007/s00031-008-9012-2 · Zbl 1151.20002 · doi:10.1007/s00031-008-9012-2
[3] Józefiak, Topics in Algebra, Banach Center Publ. pp 317– (1990)
[4] Carter, Comp. Math. 25 pp 1– (1972)
[5] Józefiak, Expo. Math. 7 pp 193– (1989)
[6] DOI: 10.1007/s11511-012-0085-3 · Zbl 1276.20004 · doi:10.1007/s11511-012-0085-3
[7] DOI: 10.1017/S0305004100055249 · Zbl 0416.20033 · doi:10.1017/S0305004100055249
[8] Wan, Bull. Inst. Math. Acad. Sinica (N.S.) 7 pp 91– (2012)
[9] DOI: 10.1016/j.jpaa.2010.09.011 · Zbl 1242.20017 · doi:10.1016/j.jpaa.2010.09.011
[10] DOI: 10.1090/S0002-9947-1951-0043784-0 · doi:10.1090/S0002-9947-1951-0043784-0
[11] DOI: 10.1016/0021-8693(92)90110-8 · Zbl 0759.20005 · doi:10.1016/0021-8693(92)90110-8
[12] DOI: 10.1090/S1088-4165-99-00085-0 · Zbl 0999.17014 · doi:10.1090/S1088-4165-99-00085-0
[13] Schur, J. Reine Angew. Math. 139 pp 155– (1911)
[14] DOI: 10.1112/jlms/s2-10.2.129 · Zbl 0307.20008 · doi:10.1112/jlms/s2-10.2.129
[15] DOI: 10.1112/jlms/s2-8.1.83 · Zbl 0279.20010 · doi:10.1112/jlms/s2-8.1.83
[16] DOI: 10.1112/plms/s3-32.3.403 · Zbl 0336.20007 · doi:10.1112/plms/s3-32.3.403
[17] DOI: 10.1016/0021-8693(74)90091-X · Zbl 0279.20011 · doi:10.1016/0021-8693(74)90091-X
[18] DOI: 10.1006/jabr.1999.8049 · Zbl 0952.20012 · doi:10.1006/jabr.1999.8049
[19] DOI: 10.1112/plms/pds041 · Zbl 1285.20003 · doi:10.1112/plms/pds041
[20] Macdonald, Symmetric functions and Hall polynomials (1995)
[21] Lusztig, Ann. of Math Stud. (1984)
[22] DOI: 10.1007/BF01390002 · Zbl 0372.20033 · doi:10.1007/BF01390002
[23] DOI: 10.1017/CBO9780511542800 · doi:10.1017/CBO9780511542800
[24] Khongsap, Special Issue on Dunkl Operators and Related Topics, SIGMA 5 pp 27– (2009) · Zbl 1182.20006
[25] DOI: 10.1007/BFb0082020 · doi:10.1007/BFb0082020
[26] DOI: 10.2140/pjm.2008.238.73 · Zbl 1155.20008 · doi:10.2140/pjm.2008.238.73
[27] Ihara, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 11 pp 155– (1965)
[28] Karpilovsky, London Math. Soc. Monogr. (N.S.) (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.