Seppälä, Louna Euler’s factorial series at algebraic integer points. (English) Zbl 1437.11095 J. Number Theory 206, 250-281 (2020). Let \(\mathbb K\) be a number field, \(n\) be a positive integer and \(\alpha_1,\dots ,\alpha_n\in\mathbb Z_{\mathbb K}\setminus \{ 0\}\). Let \(\lambda_0,\dots \lambda_n\in\mathbb Z_{\mathbb K}\) not all equal zero. Assume that \(V\) be a non-empty collection of non-Archimedian valuations of \(\mathbb K\). Then under the special conditions, the author proves that there exists valuation \(v\in V\) such that \(\lambda_0+\sum_{j=1}^n\lambda_j F_v(\alpha_j)\not= 0\) where \(F_v(t)=\sum_{i=0}^\infty i!t^i\) is a series as a function in \(v\)-adic domain \(\mathbb K\). In addition, if \(H\) is a real number such that \(H\geq \prod_{w\in V_\infty} \max_{0\leq i\leq n} \{\Vert \lambda_i \Vert _w \}\) then under other special conditions there exists prime \(p\) with \(p\in ] \log(\frac{\log H}{\log\log H}), \frac{17n\log H}{\log\log H}[\) and valuation \(v\vert p\) such that \[\Vert\lambda_0+\sum_{j=1}^n\lambda_j F_v(\alpha_j)\Vert_v> H^{-(n+1)-114n^2\frac{\log\log\log H}{\log\log H}}.\] The proofs use the method of Padé approximation. Reviewer: Jaroslav Hančl (Ostrava) MSC: 11J61 Approximation in non-Archimedean valuations 41A21 Padé approximation Keywords:Diophantine approximation; divergent series; number field; Padé approximation; \(p\)-adic valuation PDF BibTeX XML Cite \textit{L. Seppälä}, J. Number Theory 206, 250--281 (2020; Zbl 1437.11095) Full Text: DOI arXiv References: [1] Bachman, G., Introduction to p-Adic Numbers and Valuation Theory, (1964), Academic Press: Academic Press New York [2] Bertrand, D.; Chirskiĭ, V. G.; Yebbou, J., Effective estimates for global relations on Euler-type series, Ann. Fac. Sci. Toulouse Math. (6), 13, 2, 241-260, (2004) · Zbl 1176.11036 [3] Chirskiĭ, V. G., Non-trivial global relations, Vestnik Moskov. Univ. Ser. I Mat. Mekh.. Vestnik Moskov. Univ. Ser. I Mat. Mekh., Moscow Univ. Math. Bull., 44, 5, 41-44, (1989), (in Russian); English translation in · Zbl 0699.10052 [4] Chirskiĭ, V. G., Global relations, Mat. Zametki. Mat. Zametki, Math. Notes, 48, 1-2, 795-798, (1990), (in Russian); English translation in · Zbl 0764.11031 [5] Chirskiĭ, V. G., On algebraic relations in non-Archimedean fields, Funct. Anal. Appl., 26, 2, 108-115, (1992) · Zbl 0797.11062 [6] Cull, P.; Flahive, M.; Robson, R., Difference Equations, (2005), Springer: Springer New York [7] Ernvall-Hytönen, A-M.; Matala-aho, T.; Seppälä, L., On Mahler’s transcendence measure for e, Constr. Approx., 49, 405-444, (2019) · Zbl 1435.11095 [8] Ernvall-Hytönen, A-M.; Matala-aho, T.; Seppälä, L., Euler’s divergent series in arithmetic progressions, J. Integer Seq., 22, Article 19.2.2 pp., (2019) · Zbl 1443.11138 [9] Hančl, J.; Leinonen, M.; Leppälä, K.; Matala-aho, T., Explicit irrationality measures for continued fractions, J. Number Theory, 132, 1758-1769, (2012) · Zbl 1276.11124 [10] Matala-aho, T., Type II Hermite-Padé approximations of generalized hypergeometric series, Constr. Approx., 33, 289-312, (2011) · Zbl 1236.41017 [11] Matala-aho, T.; Zudilin, W., Euler’s factorial series and global relations, J. Number Theory, 186, 202-210, (2018) · Zbl 1444.11037 [12] Robbins, H., A remark on Stirling’s formula, Amer. Math. Monthly, 62, 26-29, (1955) · Zbl 0068.05404 [13] Rosser, J. B.; Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois J. Math., 6, 6-94, (1962) · Zbl 0122.05001 [14] Varadarajan, V. S., Euler and his work on infinite series, Bull. Amer. Math. Soc. (N.S.), 44, 4, 515-539, (2007) · Zbl 1135.01010 [15] Väänänen, K., On Padé approximations and global relations of some Euler-type series, Int. J. Number Theory, 14, 8, 2303-2315, (2018) · Zbl 1422.11150 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.