×

From measuring tool to geometrical object: Minkowski’s development of the concept of convex bodies. (English) Zbl 1145.01014

T. H. Kjeldsen gives a detailed analysis of an important chapter in the history of the modern theory of convex sets. In that history the German mathematician Karl Hermann Brunn (1862–1939) is usually mentioned as the first who was engaged in systematic studies about convex sets, followed by Hermann Minkowski (1864–1909). Kjeldsen points out that Minkowski did not know about Brunn’s work until after he had begun his own investigations regarding convex sets. The author states further that the modern theory of convex sets grew out of Minkowski’s work. Therefore the main aim of the paper is to explain: “why and how the concept of convex bodies emerged, took form, and led to the beginning of a theory of convexity in Minkowski’s mathematical practice.”
As a result of her analysis Kjeldsen characterizes three phases in Minkowski’s mathematical practice leading to a theory of convex bodies. The first one she describes by geometrical treatment of the minimum problem for positive definite quadratic forms. She argues further that Minkowski was led in the second phase by elaborating his geometrical approach into a more general method to the introduction of nowhere concave bodies with middle point (“Eichkörper”) and a distance function as measuring tools. Finally, the third phase was characterised by Minkowski’s investigations of convex bodies as geometrical objects for its own sake. Summarizing this development of new knowledge the author sketches the process as an interplay between two research strategies of (1) answering an old question with new methods and (2) posing and answering new questions for new mathematical objects.

MSC:

01A60 History of mathematics in the 20th century
52-03 History of convex and discrete geometry
01A55 History of mathematics in the 19th century
90C25 Convex programming
11H06 Lattices and convex bodies (number-theoretic aspects)

Biographic References:

Brunn, Karl Hermann; Minkowski, Hermann
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bonnesen T, Fenchel W. (1934) Theorie der konvexen körper. Berlin: Julius Springer Verlag · Zbl 0008.07708
[2] Brunn, H.: Ueber Ovale und Eiflächen. Inaugural-Dissertation, Munich: Akademische Buchdruckerei von F. Straub, 1887. · JFM 19.0615.01
[3] Brunn H.(1889) Ueber Curven ohne Wendepunkte. Habilitationsschrift, Munich: Theodor Ackermann · JFM 21.0815.01
[4] Brunn H. (1894) ”Referat über eine Arbeit: Exacte Grundlagen für 3eine Theorie der Ovale”. Sitzungsberichte der Mathematik und Physik XXIV: 93–111 · JFM 25.0873.03
[5] Corry L. (2004) ”Introduction: The History of Modern Mathematics – Writing and Rewriting”. Science in Context 17: 1–21 · Zbl 1169.01301 · doi:10.1017/S0269889704000031
[6] Dirichlet G.L. (1850) ”Über die Reduction der positiven quadratischen Formen mit drei unbestimten ganzen Zahlen”. Journal für die reine und angewandte Mathematik 40: 209–227 · ERAM 040.1103cj · doi:10.1515/crll.1850.40.209
[7] Epple M. (2004) ”Knot Invariants in Vienna and Princeton during the 1920s: Epistemic Configurations of Mathematical Research”. Science in Context 17: 131–164 · Zbl 1181.01044 · doi:10.1017/S0269889704000079
[8] Fenchel W. (1983) ”Convexity through the Ages.” In: Peter M. Gruber, Jörg M. Wills (eds) Convexity and Its Applications. Birkhäuser, Basel-Boston-Stuttgart, pp 120–130. · Zbl 0518.52001
[9] Gauss, C. F.: Collected Works, Göttingen 1863, 188–196.
[10] Goldman J.R. (1998) The Queen of Mathematics. Wellesley, Massachusetts: A K Peters, Ltd. · Zbl 0890.11001
[11] Gray J. (1992) ”The nineteenth-century revolution in mathematical ontology”. In: Donald Gillies (eds) Revolutions in Mathematics. Oxford: Clarendon Press, pp 226–248 · Zbl 0967.00508
[12] Gruber, P.: ”Zur Geschicthe der Konvexgeometrie und der Geometrie der Zahlen”. In Gerd Fischer. Friedrich Hirzebruch, Winfried Scharlau and Willi Törnig (eds.) Ein Jahrhundert Mathematik 1890–1990. Festschrift zum Jubiläum der DMV. Barunschweig-Wiesbaden: Deutsche Mathematiker-Vereinigung, Friedr. Vieweg & Sohn, 1990, 421–455. · Zbl 0864.11004
[13] Gruber, P.: ”History of Convexity”. In M. Gruber and Jörg M. Wills (eds.) Handbook of Convex Geometry. Elsevier Science Publishers, 1993, 3–15. · Zbl 0791.52001
[14] Hermite C. (1850) ”Extraits de letters d. M. Ch. Hermite a M. Jacobi sur différents objects de la théorie des nombres”. Journal für die reine und angewandte Mathematik 40: 261–315 · ERAM 040.1108cj · doi:10.1515/crll.1850.40.261
[15] Hilbert, D.: ”Hermann Minkowski. Gedächtnisrede” 1909, V-XXXI in (Minkowski, 1911, vol. I).
[16] Jordan, C.: ”Remarques sur les integrals définies,” Journal de Mathématiques, 4. series, 8 (1892) 77.
[17] Kjeldsen T.H. (2000) ”A Contextualized Historical Analysis of the Kuhn-Tucker Theorem in Nonlinear Programming: The Impact of World War II”. Historia Mathematica 27: 331–361 · Zbl 0973.01030 · doi:10.1006/hmat.2000.2289
[18] Kjeldsen T.H. (2001) ”John von Neumann’s Conception of the Minimax Theorem: A Journey Through Different Mathematical Contexts”. Archive for History of Exact Sciences 56: 39–68 · Zbl 0988.01005 · doi:10.1007/s004070100041
[19] Kjeldsen T.H. (2002) ”Different Motivations and Goals in the Historical Development of the Theory of Systems of Linear Inequalities”. Archive for History of Exact Sciences 56: 469–538 · Zbl 1018.01002 · doi:10.1007/s004070200057
[20] Kjeldsen T.H. (2003) ”New Mathematical Disciplines and Research in the Wake of World War II”. In: Booss-Bavnbek, Høyrup (eds) Mathematics and War. Birkhäuser Verlag, Basel-Boston-Berlin, pp 126–152.
[21] Kjeldsen T.H. (2006) ”The Development of Nonlinear Programming in Post War USA: Origin, Motivation, and Expansion”. In: Andersen H.B., Christiansen F.V., Jørgensen K.F., Hendricks V. (eds): The Way Through Science and Philosophy: Essays in Honour of Stig Andur Pedersen. College Publications, London, pp 31–50 · Zbl 1228.90004
[22] Kjeldsen, T. H.: ”Ovals, Egg-forms, and ”Measure” bodies: Different Mathematical Practices in the Early History of the Development of the Modern Theory of Convexity.” Forthcoming. · Zbl 1167.52001
[23] Klee V. (eds) (1963) ”Convexity”, Proceedings of Symposia in Pure Mathematics, volume VII. Providence, Rhode Island: American Mathematical Society · Zbl 0129.00103
[24] Minkowski, H.: ”Sur la réduction des formes quadratiques positives quaternaires” (1883), 145–148 in (Minkowski, 1911, vol. I). · JFM 15.0152.04
[25] Minkowski, H.: ”Grundlagen für eine Theorie der quadratischen Formen mit ganzzahligen Koeffizienten” (1884), 3–144 in (Minkowski, 1911, vol. I).
[26] Minkowski, H.: ”Über einige Anwendungen der Arithmetik in der Analysis”, probationary lecture, (1887) 85–88 in (Schwermer, 1991).
[27] Minkowski, H.: ”Über die positiven quadratischen Formen und über kettenbruchähnliche Algoritmen” (1891a), 243–260 in (Minkowski, 1911, vol. I).
[28] Minkowski, H.: ”Über Geometrie der Zahlen” (1891b), 264–265 in (Minkowski, 1911, vol. I).
[29] Minkowski, H.: ”Extrait d’une lettre adressée à M. Hermite” (1893a), 266–270 in (Minkowski, 1911, vol.\(\sim\)I).
[30] Minkowski, H.: ”Über Eigenschaften von ganzen Zahlen, die durch räumliche Anschauung erschlossen sind” (1893b), 271–277 in (Minkowski, 1911, vol. I).
[31] Minkowski, H.: Geometrie der Zahlen. B. G. Teubner, 1896. (All page references is to the 1953 edition).
[32] Minkowski, H.: ”Allgemeine Lehrsätze über die konvexen Polyeder” (1897), 103–121 in (Minkowski, 1911, vol.II). · JFM 28.0427.01
[33] Minkowski, H.: ”Über die Begriffe Länge, Oberfläche und Volumen” (1901a), 122–127 in (Minkowski, 1911, vol.II). · JFM 32.0300.02
[34] Minkowski, H.: ”Über die geschlossenen konvexen Flächen” (1901b), 128–130 in (Minkowski, 1911, vol.II).
[35] Minkowski, H.: ”Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs” 131–229 in (Minkowski, 1911, vol.II).
[36] Minkowski, H.: ”Volumen und Oberfläche” (1903), 230–276 in (Minkowski, 1911, vol.II). · JFM 34.0649.01
[37] Minkowski H. (1911) Gesammelte Abhandlungen. B. G. Teubner, Leipzig, Berlin · JFM 42.0023.03
[38] Minkowski H. (1973) Briefe an David Hilbert. L. Rüdenberg, H. Zassenhaus, Berlin-Heidelberg-New York
[39] Reid C. (1970) Hilbert. Berlin, Heidelberg, New York: Springer-Verlag
[40] Schwermer J. (1991) ”Räumliche Anschauung und Minima positive definiter quadratischer Formen”. Jahresbericht der Deutschen Mathematiker-Vereinigung 93: 49–105 · Zbl 0725.01004
[41] Scharlau, W.: ”A Historical Introduction to the Theory of Integral Quadratic Forms”, Conference on Quadratic Forms. Edited by G. Crzech. Queen’s University, Kingston, Ontario, Canada. 1977. · Zbl 0382.10016
[42] Scharlau W., Opolka H. (1985) From Fermat to Minkowski. New York: Springer Verlag · Zbl 0551.10001
[43] Strobl W. (1985) ”Aus den wissenschaftlichen Anfängen Hermann Minkowskis”. Historia Mathematica 12: 142–156 · Zbl 0578.01014 · doi:10.1016/0315-0860(85)90004-7
[44] Thompson A.C. (1996) Minkowski Geometry. Cambridge, MA: Cambridge University Press · Zbl 0868.52001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.