zbMATH — the first resource for mathematics

Adaptive modeling, adaptive data assimilation and adaptive sampling. (English) Zbl 1112.86004
Summary: For efficient progress, model properties and measurement needs can adapt to oceanic events and interactions as they occur. The combination of models and data via data assimilation can also be adaptive. These adaptive concepts are discussed and exemplified within the context of comprehensive real-time ocean observing and prediction systems. Novel adaptive modeling approaches based on simplified maximum likelihood principles are developed and applied to physical and physical-biogeochemical dynamics. In the regional examples shown, they allow the joint calibration of parameter values and model structures. Adaptable components of the Error Subspace Statistical Estimation (ESSE) system are reviewed and illustrated. Results indicate that error estimates, ensemble sizes, error subspace ranks, covariance tapering parameters and stochastic error models can be calibrated by such quantitative adaptation. New adaptive sampling approaches and schemes are outlined. Illustrations suggest that these adaptive schemes can be used in real time with the potential for most efficient sampling.

86A32 Geostatistics
Full Text: DOI
[1] Anderson, J.L.; Anderson, S.L., A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. weather rev., 127, 2741-2758, (1999)
[2] Anderson, J.L., An ensemble adjustment Kalman filter for data assimilation, Mon. weather rev., 129, 2884-2903, (2001)
[3] HOPS-ESSE contributions to the Autonomous Ocean Sampling Network-II (AOSN-II) field exercise. http://www.deas.harvard.edu/leslie/AOSNII/index.html, August 2003
[4] Barth, N.H.; Wunsch, C., Oceanographic experiment design by simulated annealing, J. phys. oceanogr., 20, 1249-1263, (1990)
[5] J.G. Bellingham, J.S. Willcox, Optimizing AUV oceanographic surveys, in: IEEE Conference on Autonomous Underwater Vehicles Technology, Monterey, CA, 1996
[6] Bennett, A.F., Inverse methods in physical oceanography, () · Zbl 1143.76002
[7] Beven, K.J.; Freer, J., Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the glue methodology, J. hydrology, 249, 11-29, (2001)
[8] Bishop, C.H.; Toth, Z., Ensemble transformation and adaptive observations, J. atmos. sci., 56, 1748-1765, (1999)
[9] Bishop, C.H.; Etherton, B.J.; Majumdar, S.J., Adaptive sampling with the ensemble transform Kalman filter. part I: theoretical aspects, Mon. weather rev., 129, 420-436, (2001)
[10] Blanchet, I.; Frankignoul, C.; Cane, M.A., A comparison of adaptive Kalman filters for a tropical Pacific Ocean model, Mon. weather rev., 125, 40-58, (1997)
[11] Buizza, R.; Montani, A., Targeted observations using singular vectors, J. atmospheric sci., 56, 2965-2985, (1999)
[12] Brink, K.H.; Beardsley, R.C.; Niiler, P.P.; Abbott, M.; Huyer, A.; Ramp, S.; Stanton, T.; Stuart, D., Statistical properties of near-surface flow in the California coastal transition zone, J. geophys. res., 96, 14,693-14,706, (1991)
[13] M.D. Cox, A primitive equation, 3-dimensional model of the ocean, Technical Report, Geophysical Fluid Dynamical Laboratory/NOAA, Princeton, 1984
[14] Dash optimization
[15] Duda, R.O.; Hart, P.E.; Stork, D.G., Pattern classification, (2000), Wiley-Interscience New York
[16] Erickson, G.J.; Smith, C.R., Maximum-entropy and Bayesian methods in science and engineering, (1988), Kluwer Academic Publishers Dordrecht, Boston
[17] Evensen, G.; Dee, D.; Schroter, J., Parameter estimation in dynamical models, () · Zbl 0992.76075
[18] Gangopadhyay, A.; Robinson, A.R., Feature oriented regional modeling of oceanic fronts, Dyn. atmos. Ocean., 36, 201-232, (2002)
[19] Gard, T.C., Introduction to stochastic differential equations, (1988), Marcel Dekker New York, 234 pages · Zbl 0682.92018
[20] Gardiner, C.W., Handbook of stochastic methods for physics, chemistry and the natural sciences, (1983), Springer-Verlag, 442 pages · Zbl 0862.60050
[21] Gaspari, G.; Cohn, S.E., Construction of correlation functions in two and three dimensions, Quart. J. roy. meteor. soc., 125, 723-757, (1999)
[22] ()
[23] Griffies, S., Fundamentals of Ocean climate models, (2004), Princeton University Press, 496 pages · Zbl 1065.86002
[24] Hamill, T.M; Whitaker, J.S.; Snyder, C., Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter, Mon. weather rev., 129, 2776-2790, (2001)
[25] T.M. Hamill, Ensemble-based atmospheric data assimilation: A tutorial. University of Colorado and NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, 2003, 46 pages
[26] Hickey, B.M., (), 345-393, (Chapter 12)
[27] Haley, P.J.; Lermusiaux, P.F.J.; Leslie, W.G.; Robinson, A.R., Harvard Ocean prediction system (HOPS)
[28] Hofmann, E.E.; Friedrichs, M.A.M., Predictive modeling for marine ecosystems, (), 537-565
[29] Horn, R.A.; Johnson, C.R., Matrix analysis, (1985), Cambridge University Press, 561 pages · Zbl 0576.15001
[30] Horn, R.A.; Johnson, C.R., Topics in matrix analysis, (1991), Cambridge University Press, 607 pages · Zbl 0729.15001
[31] Houtekamer, P.L.; Mitchell, H.L., Data assimilation using an ensemble Kalman filter technique, Mon. weather rev., 126, 796-811, (1998)
[32] Houtekamer, P.L.; Mitchell, H.L., A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. weather rev., 129, 123-137, (2001)
[33] Ide, K.; Courtier, P.; Ghil, M.; Lorenc, A.C., Unified notation for data assimilation: operational, sequential and variational, J. meteor. soc. Japan, 75, 1B, 181-189, (1997)
[34] Jazwinski, A.H., Stochastic processes and filtering theory, (1970), Academic Press · Zbl 0203.50101
[35] Kalnay, E., Atmospheric modeling, data assimilation and predictability, (2003), Cambridge University Press, 341 pages
[36] Kohl, A.; Stammer, D., Optimal observations for variational data assimilation, J. phys. Ocean, 34, 529-542, (2004)
[37] Lalli, C.M.; Parsons, T.R., Biological oceanography: an introduction, (1997), Butterworth-Heinemann Oxford, 314 pages
[38] Lermusiaux, P.F.J.; Robinson, A.R., Data assimilation via error subspace statistical estimation, part I: theory and schemes, Mon. weather rev., 127, 7, 1385-1407, (1999)
[39] Lermusiaux, P.F.J., Data assimilation via error subspace statistical estimation, part II: middle atlantic bight shelfbreak front simulations and ESSE validation, Mon. weather rev., 127, 7, 1408-1432, (1999)
[40] Lermusiaux, P.F.J., Estimation and study of mesoscale variability in the strait of Sicily, Dyn. atmos. Ocean., 29, 255-303, (1999)
[41] Lermusiaux, P.F.J.; Anderson, D.G.; Lozano, C.J., On the mapping of multivariate geophysical fields: error and variability subspace estimates, Quart. J. roy. meteor. soc., April B, 1387-1430, (2000)
[42] Lermusiaux, P.F.J., Evolving the subspace of the three-dimensional multiscale ocean variability: massachusetts bay (“three-dimensional ocean circulation: Lagrangian measurements and diagnostic analyses”), J. marine syst., 29/1-4, 385-422, (2001), (special issue)
[43] Lermusiaux, P.F.J., On the mapping of multivariate geophysical fields: sensitivity to size, scales and dynamics, J. atmos. Ocean. tech., 19, 1602-1637, (2002)
[44] Lermusiaux, P.F.J.; Robinson, A.R.; Haley, P.J.; Leslie, W.G., Advanced interdisciplinary data assimilation: filtering and smoothing via error subspace statistical estimation, (), 795-802
[45] Lermusiaux, P.F.J.; Evangelinos, C.; Tian, R.; Haley, P.J.; McCarthy, J.J.; Patrikalakis, N.M.; Robinson, A.R.; Schmidt, H., Adaptive coupled physical and biogeochemical Ocean predictions: A conceptual basis, (), 685-692
[46] Majumdar, S.J.; Bishop, C.H.; Etherton, B.J., Adaptive sampling with the ensemble transform Kalman filter. part II: field program implementation, Mon. weather rev., 130, 1356-1369, (2002)
[47] Majumdar, S.J.; Bishop, C.H.; Etherton, B.J.; Szunyogh, I.; Toth, Z., Can an ensemble transform Kalman filter predict the reduction in forecast error variance produced by targeted observations quart, J. roy. meteor. soc., 127, 2803-2820, (2001)
[48] ()
[49] Matear, R.J., Parameter optimization and analysis of ecosystem models using simulated annealing: A case study at station P, J. marine res., 53, 571-607, (1995)
[50] McCarthy, J.J.; Robinson, A.R.; Rothschild, B.J., (), (Chapter 1)
[51] Menemenlis, D.; Chechelnitsky, M., Error estimates for an Ocean general circulation from altimeter and acoustic tomography data, Mon. weather rev., 128, 763-778, (2000)
[52] Menemenlis, D.; Fukumori, I.; Lee, T., Using green’s functions to calibrate an Ocean general circulation model, Mon. weather rev., 133, 1224-1240, (2005)
[53] Miller, R.N.; Ehret, L.L., Ensemble generation for models of multimodal systems, Mon. weather rev., 130, 9, 2313-2333, (2002)
[54] (), 523 pages
[55] MOOS upper-water-column science experiment (MUSE)
[56] Nemhauser, G.L.; Wolsey, L.A., Integer and combinatorial optimization, (1988), John Wiley & Sons New York · Zbl 0469.90052
[57] Orlanski, I., A simple boundary condition for unbounded hyperbolic flows, J. comput. phys., 41, 251-269, (1976) · Zbl 0403.76040
[58] Ott, E.; Hunt, B.R.; Szunyogh, I.; Zimin, A.V.; Kostelich, E.J.; Corazza, M.; Kalnay, E.; Patil, D.J.; Yorke, J.A., A local ensemble Kalman filter for atmospheric data assimilation, Tellus A, 56, 5, 415, (2004)
[59] Palmer, T.N.; Gelaro, R.; Barkmeijer, J.; Buizza, R., Singular vectors, metrics and adaptive observations, J. atmospheric sci., 55, 633-653, (1998)
[60] (), 472 pages
[61] Robinson, A.R.; Lermusiaux, P.F.J.; Sloan, N.Q., (), 541-594
[62] Robinson, A.R.; Glenn, S.M., Adaptive sampling for Ocean forecasting, Naval res. rev., 51, 2, 28-38, (1999)
[63] Robinson, A.R.; Lermusiaux, P.F.J., Data assimilation in models, (), 623-634
[64] Rosenfeld, L.K.; Schwing, F.B.; Garfield, N.; Tracy, D.E., Bifurcated flow from an upwelling center — A cold-water source for monterey bay, Cont. shelf res., 14, 9, 931-964, (1994)
[65] Schrijver, A., Theory of linear and integer programming, (1998), John Wiley and Sons · Zbl 0970.90052
[66] Smedstad, O.M.; O’Brien, J.J., Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model, Prog. oceanogr., 26, 179-241, (1991), Pergamon
[67] Shapiro, R., Smoothing, filtering, and boundary effects, Rev. geophys. space phys., 8, 2, 359-387, (1970)
[68] Stammer, D., Adjusting internal model errors through Ocean state estimation, J. phys. oceanogr., 35, 1143-1153, (2005)
[69] Szunyogh, I.; Toth, Z.; Emanuel, K.A.; Bishop, C.H.; Snyder, C.; Morss, R.E.; Woolen, J.S.; Marchok, T.P., Ensemble-based targeting experiments during FASTEX: the effect of dropsonde data from the lear jet, Quart. J. roy. meteor. soc., 125, 3189-3217, (1999)
[70] R.C. Tian, P.F.J. Lermusiaux, J.J. McCarthy, A.R. Robinson, A generalized prognostic model of marine biogeochemical-ecosystem dynamics: Structure, parameterization and adaptive modeling, Harvard Reports in Physical/Interdisciplinary Ocean Science, No. 67, 2004, pp. 1-65
[71] Thacker, W.G.; Long, R.B., Fitting dynamics to data, J. geophys. res., 93, 1227-1240, (1988)
[72] Thompson, S.K.; Seber, G.A.F., Adaptive sampling, (), 288 pages
[73] Thompson, S.K., Sampling, (2002), J. Wiley & Sons New York · Zbl 1002.62012
[74] N.K. Yilmaz, Path planning of autonomous underwater vehicles for adaptive sampling, Ph.D. Thesis, Department of Mechanical Engineering MIT, September 2005
[75] Whitaker, J.S.; Hamill, T.M., Ensemble data assimilation without perturbed observations, Mon. weather rev., 130, 1913-1924, (2002)
[76] Wunsch, C., The Ocean circulation inverse problem, (1996), Cambridge Univ. Press
[77] Zhang, K.Q.; Marotzke, J., The importance of open-boundary estimation for an indian Ocean GCM-data synthesis, J. marine res., 57, 2, 305-334, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.