×

A free energy principle for biological systems. (English) Zbl 1319.92015

Summary: This paper describes a free energy principle that tries to explain the ability of biological systems to resist a natural tendency to disorder. It appeals to circular causality of the sort found in synergetic formulations of self-organization (e.g., the slaving principle) and models of coupled dynamical systems, using nonlinear Fokker Planck equations. Here, circular causality is induced by separating the states of a random dynamical system into external and internal states, where external states are subject to random fluctuations and internal states are not. This reduces the problem to finding some (deterministic) dynamics of the internal states that ensure the system visits a limited number of external states; in other words, the measure of its (random) attracting set, or the Shannon entropy of the external states is small. We motivate a solution using a principle of least action based on variational free energy (from statistical physics) and establish the conditions under which it is formally equivalent to the information bottleneck method. This approach has proved useful in understanding the functional architecture of the brain. The generality of variational free energy minimisation and corresponding information theoretic formulations may speak to interesting applications beyond the neurosciences; e.g., in molecular or evolutionary biology.

MSC:

92C42 Systems biology, networks
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1162/089976601753195969 · Zbl 0993.68045 · doi:10.1162/089976601753195969
[2] DOI: 10.1038/nrn2787 · doi:10.1038/nrn2787
[3] DOI: 10.1098/rstb.2005.1622 · doi:10.1098/rstb.2005.1622
[4] Helmholtz, Concerning the perceptions in general, Treatise on Physiological Optics (1962)
[5] DOI: 10.1098/rspb.1968.0071 · doi:10.1098/rspb.1968.0071
[6] DOI: 10.1162/neco.1995.7.5.889 · Zbl 05480377 · doi:10.1162/neco.1995.7.5.889
[7] DOI: 10.1016/j.tins.2004.10.007 · doi:10.1016/j.tins.2004.10.007
[8] DOI: 10.1016/j.tics.2006.05.002 · doi:10.1016/j.tics.2006.05.002
[10] Feynman, Statistical Mechanics (1972)
[12] DOI: 10.1049/el:19950331 · doi:10.1049/el:19950331
[13] DOI: 10.1016/j.neuroimage.2006.08.035 · doi:10.1016/j.neuroimage.2006.08.035
[14] DOI: 10.1038/4580 · doi:10.1038/4580
[15] Ortega, A Minimum Relative Entropy Principle for Learning and Acting, J. Artif. Intell. Res. 38 pp 475– (2010)
[16] DOI: 10.1016/j.jphysparis.2006.10.001 · doi:10.1016/j.jphysparis.2006.10.001
[17] DOI: 10.1080/00221309.1947.9918144 · doi:10.1080/00221309.1947.9918144
[18] DOI: 10.1016/j.neunet.2009.07.023 · doi:10.1016/j.neunet.2009.07.023
[19] DOI: 10.3389/neuro.11.020.2009 · doi:10.3389/neuro.11.020.2009
[20] DOI: 10.3389/fnhum.2010.00215 · doi:10.3389/fnhum.2010.00215
[21] DOI: 10.1007/s00422-010-0364-z · doi:10.1007/s00422-010-0364-z
[22] DOI: 10.1007/s00422-011-0424-z · Zbl 1232.92036 · doi:10.1007/s00422-011-0424-z
[23] DOI: 10.1155/2012/937860 · Zbl 1422.91632 · doi:10.1155/2012/937860
[24] DOI: 10.1098/rspa.2012.0683 · Zbl 1372.91080 · doi:10.1098/rspa.2012.0683
[25] Bernard, Lectures on the Phenomena Common to Animals and Plants (1974)
[26] Kauffman, The Origins of Order: Self-Organization and Selection in Evolution (1993)
[27] Maturana, Autopoiesis: the organization of the living, Autopoiesis and Cognition (1980)
[28] Nicolis, Self-Organization in Non-Equilibrium Systems (1977)
[29] DOI: 10.1016/j.bpc.2004.12.001 · doi:10.1016/j.bpc.2004.12.001
[30] DOI: 10.1016/j.newideapsych.2006.09.002 · doi:10.1016/j.newideapsych.2006.09.002
[31] DOI: 10.1080/00207727008920220 · Zbl 0206.14602 · doi:10.1080/00207727008920220
[32] DOI: 10.1103/PhysRev.106.620 · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[33] DOI: 10.1007/BF01193705 · Zbl 0819.58023 · doi:10.1007/BF01193705
[34] DOI: 10.1007/BF02219225 · Zbl 0884.58064 · doi:10.1007/BF02219225
[35] Arnold, Random Dynamical Systems (Springer Monographs in Mathematics) (2003)
[36] DOI: 10.1126/science.1155564 · doi:10.1126/science.1155564
[37] Qian, Entropy demystified: the ”thermo”-dynamics of stochastically fluctuating systems, Methods Enzymol. 467 pp 111– (2009) · doi:10.1016/S0076-6879(09)67005-1
[38] DOI: 10.1021/jp055592s · doi:10.1021/jp055592s
[39] DOI: 10.1088/0253-6102/49/5/01 · Zbl 1392.37093 · doi:10.1088/0253-6102/49/5/01
[40] DOI: 10.1007/s00285-010-0349-5 · Zbl 1232.92075 · doi:10.1007/s00285-010-0349-5
[41] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[42] DOI: 10.1007/BF00198909 · Zbl 0797.92011 · doi:10.1007/BF00198909
[43] DOI: 10.1017/S0140525X01000097 · doi:10.1017/S0140525X01000097
[44] DOI: 10.1063/1.3309017 · Zbl 1311.34114 · doi:10.1063/1.3309017
[45] Ginzburg, On the theory of superconductivity, Zh. Eksp. Teor. Fiz. 20 pp 1064– (1950)
[46] Haken, Synergetics: An introduction. Nonequilibrium Phase Transition and Self-Organisation in Physics, Chemistry and Biology (1983) · Zbl 0523.93001
[47] Frank, Nonlinear Fokker-Planck Equations: Fundamentals and Applications (Springer Series in Synergetics) (2005) · Zbl 1071.82001
[48] DOI: 10.3389/fnhum.2010.00190 · doi:10.3389/fnhum.2010.00190
[49] DOI: 10.3390/info1010028 · doi:10.3390/info1010028
[50] DOI: 10.3389/fnsys.2011.00080 · doi:10.3389/fnsys.2011.00080
[51] DOI: 10.1007/BF02505989 · Zbl 0954.37027 · doi:10.1007/BF02505989
[52] DOI: 10.1073/pnas.17.2.656 · doi:10.1073/pnas.17.2.656
[53] DOI: 10.1088/0953-8984/22/6/063101 · doi:10.1088/0953-8984/22/6/063101
[54] DOI: 10.1214/aoms/1177729694 · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[55] DOI: 10.1038/335311a0 · doi:10.1038/335311a0
[56] DOI: 10.1162/089976698300017818 · doi:10.1162/089976698300017818
[58] DOI: 10.1155/2010/621670 · Zbl 1189.94032 · doi:10.1155/2010/621670
[59] DOI: 10.1007/BF00198477 · doi:10.1007/BF00198477
[60] DOI: 10.1098/rstb.2008.0300 · doi:10.1098/rstb.2008.0300
[61] DOI: 10.1073/pnas.0501865102 · doi:10.1073/pnas.0501865102
[62] Accord de différentes lois de la nature qui avaient jusqu’ici paru incompatibleshttps://fr.wikisource.org/wiki/Accord_de_diff
[63] Le lois de mouvement et du repos, déduites d’un principe de métaphysiquehttp://fr.wikisource.org/wiki/Les_Loix_du_mouvement_et_du_repos_d
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.