×

Suspension flow through an asymmetric T-junction. (English) Zbl 1460.76846

Summary: The flow of a suspension through a bifurcating channel is studied experimentally and by computational methods. The geometry considered is an ‘asymmetric T’, as flow in the entering branch divides to either continue straight or to make a right angle turn. All branches are of the same square cross-section of side length \(D\), with inlet and outlet section lengths \(L\) yielding \(L/D=58\) in the experiments. The suspensions are composed of neutrally buoyant spherical particles in a Newtonian liquid, with mean particle diameters of \(d=250\mu\text{m}\) and \(480\mu\text{m}\) resulting in \(d/D\approx 0.1\) to \(d/D\approx 0.2\) for \(D=2.4\text{mm}\). The flow rate ratio \(\beta=Q_\|/Q_0\), defined for the bulk, fluid and particles, is used to characterize the flow behaviour; here \(Q_\|\) and \(Q_0\) are volumetric flow rates in the straight outlet branch and inlet branch, respectively. The channel Reynolds number \(Re=(\rho DU)/\eta\) was varied over \(0<Re<900\), with \(\rho\) and \(\eta\) the fluid density and viscosity, respectively, and \(U\) the mean velocity in the inlet channel; the inlet particle volume fraction was \(0.05\leqslant \phi_0\leqslant 0.30\). Experimental and numerical results for single-phase Newtonian fluid both show \(\beta\) increasing with \(Re\), implying more material tending toward the straight branch as the inertia of the flow increases. In suspension flow at small \(\phi_0\), inertial migration of particles in the inlet branch affects the flow rate ratio for particles ( \(\beta_{\mathrm{particle}}\)) and suspension ( \(\beta_{\mathrm{suspension}}\)). The flow split for the bulk suspension satisfies \(\beta>0.5\) for \(\phi_0<0.16\) while \(\phi_0=0.16\) crosses from \(\beta\approx 0.5\) to \(\beta>0.5\) at \(Re\approx 100\). For \(\phi_0\geqslant 0.2\), \(\beta<0.5\) at all \(Re\) studied. A complex dependence of the mean solid fraction in the downstream branches upon inlet fraction \(\phi_0\) and \(Re\) is observed: for \(\phi_0<0.1\), the solid fraction in the straight downstream branch initially decreases with \(Re\), before increasing to surpass the inlet fraction at large \(Re\) (\(Re\approx 500\) for \(\phi_0=0.05\)). At \(\phi_0>0.1\), the solid fraction in the straight branch satisfies \(\phi_\|/\phi_0>1\), and this ratio grows with \(Re\). Discrete-particle simulations employing immersed boundary and lattice-Boltzmann techniques are used to analyse these phenomena, allowing rationalization of aspects of this complex behaviour as being due to particle migration in the inlet branch.

MSC:

76T20 Suspensions
76M28 Particle methods and lattice-gas methods
76-05 Experimental work for problems pertaining to fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahmed, G. M. Y.; Singh, A., Numerical simulation of particle migration in asymmetric bifurcation channel, J. Non-Newtonian Fluid Mech., 166, 42-51, (2011) · Zbl 1281.76046 · doi:10.1016/j.jnnfm.2010.10.004
[2] Aidun, C. K.; Lu, Y.; Ding, J.-E., Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid Mech., 373, 287-311, (1998) · Zbl 0933.76092 · doi:10.1017/S0022112098002493
[3] Asmolov, E. S., The inertial lift on a spherical particle in a plane Poiseuille flow at a large channel Reynolds number, J. Fluid Mech., 381, 63-87, (1999) · Zbl 0935.76025 · doi:10.1017/S0022112098003474
[4] Bhagat, A. A. S.; Kuntaegowdanahalli, S. S.; Papautsky, I., Enhanced particle filtration in straight microchannels using shear-modulated inertial migration, Phys. Fluids, 20, (2008) · Zbl 1182.76060 · doi:10.1063/1.2998844
[5] Boyer, F.; Pouliquen, Q.; Guazzelli, E., Dense suspension in rotating-rod flows: normal stresses and particle migration, J. Fluid Mech., 686, 5-25, (2011) · Zbl 1241.76008 · doi:10.1017/jfm.2011.272
[6] Bugliarello, G.; Hsiao, G. C. C., Phase separation in suspensions flowing through bifurcations: a simplified hemodynamic model, Science, 143, 3605, 469-471, (1964) · doi:10.1126/science.143.3605.469
[7] Chun, B.; Ladd, A. C. J., Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions, Phys. Fluids, 18, (2006) · doi:10.1063/1.2176587
[8] Deboeuf, A.; Gauthier, G.; Martin, J.; Yurkovetsky, Y.; Morris, J. F., Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy, Phys. Rev. Lett., 102, (2009) · doi:10.1103/PhysRevLett.102.108301
[9] Doyeux, V.; Podgorski, T.; Peponas, S.; Ismail, M.; Coupier, G., Spheres in the vicinity of a bifurcation: elucidating the Zweifach-Fung effect, J. Fluid Mech., 674, 359-388, (2011) · Zbl 1241.76467 · doi:10.1017/S0022112010006567
[10] Einstein, A., Eine neue Bestimmung der Moleküldimensionen, Ann. Phys. (4), 19, 289-306, (1906) · JFM 37.0811.01 · doi:10.1002/andp.19063240204
[11] Enden, G.; Popel, A. S., A numerical study of plasma skimming in small vascular bifurcations, Trans. ASME J. Biomech. Engng, 116, 1, 79-88, (1994) · doi:10.1115/1.2895708
[12] Garagash, D.; Lecampion, B.; Desroches, J., Pressure-driven suspension flow near jamming, Phys. Rev. Lett., 114, (2015)
[13] Garagash, D. I.; Lecampion, B., Confined flow of suspension modeled by a frictional rheology, J. Fluid Mech., 759, 197-235, (2014) · doi:10.1017/jfm.2014.557
[14] Glowinski, R.; Pan, T. W.; Hesla, T. I.; Joseph, D. D.; Periaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 2, 363-426, (2001) · Zbl 1047.76097 · doi:10.1006/jcph.2000.6542
[15] Guazzelli, É.; Morris, J. F., A Physical Introduction to Suspension Dynamics, (2012), Cambridge University Press · Zbl 1426.76003
[16] Haddadi, H.; Morris, J. F., Microstructure and rheology of finite inertia neutrally buoyant suspensions, J. Fluid Mech., 749, 431-459, (2014) · doi:10.1017/jfm.2014.238
[17] Haddadi, H.; Shojaei-Zadeh, S.; Morris, J. F., Lattice-Boltzmann simulation of inertial particle-laden flow around an obstacle, Phys. Rev. Fluids, 1, (2016) · doi:10.1103/PhysRevFluids.1.024201
[18] Ham, F.2007An efficient scheme for large eddy simulation of low-Ma combustion in complex configurations. In Annu. Res. Briefs, p. 41. Center for Turbulence Research, Stanford University.
[19] Ham, F., Mattsson, K. & Iaccarino, G.2006Accurate and stable finite volume operators for unstructured flow solvers. In Annu. Res. Briefs, pp. 243-261. Center for Turbulence Research, Stanford University.
[20] Hampton, R. E.; Mammoli, A. A.; Graham, A. L.; Tetlow, W.; Altobelli, S. A., Migration of particles undergoing pressure-driven flow in a circular conduit, J. Rheol., 41, 621-640, (1997) · doi:10.1122/1.550863
[21] Han, M.; Kim, C.; Kim, M.; Lee, S., Particle migration in tube flow of suspesnsion, J. Rheol., 43, 197, 1157-1174, (1999) · doi:10.1122/1.551019
[22] Ho, B. P.; Leal, L. G., Inertial migration of rigid spheres in two-dimensional unidirectional flow, J. Fluid Mech., 65, 365-400, (1974) · Zbl 0284.76076 · doi:10.1017/S0022112074001431
[23] Iwanami, S.; Suu, T., Study on flow characteristics in right-angled pipe fittings, Bull. JSME, 12, 53, 1051-1061, (1969) · doi:10.1299/jsme1958.12.1051
[24] Kempe, T.; Fröhlich, J., Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids, J. Fluid Mech., 709, 445-489, (2012) · Zbl 1275.76206 · doi:10.1017/jfm.2012.343
[25] Kempe, T.; Fröhlich, J., An improved immersed boundary method with direct forcing for the simulation of particle laden flows, J. Comput. Phys., 231, 9, 3663-3684, (2012) · Zbl 1402.76143 · doi:10.1016/j.jcp.2012.01.021
[26] Koh, C. J.; Hookham, P.; Leal, L. G., An experimental investigation of concentrated suspension flows in a rectangular channel, J. Fluid Mech., 266, 1-32, (1994) · doi:10.1017/S0022112094000911
[27] Krieger, I. M., Rheology of monodisperse lattices, Adv. Colloid Interface Sci., 3, 2, 111-136, (1972) · doi:10.1016/0001-8686(72)80001-0
[28] Krishnan, S.; Shaqfeh, E. S. G.; Iaccarino, G., Fully resolved viscoelastic particulate simulations using unstructured grids, J. Comput. Phys., 338, 313-338, (2017) · Zbl 1415.76500 · doi:10.1016/j.jcp.2017.02.068
[29] Kulkarni, P. M., Manoorkar, S., Morris, J. F. & Tonmukayakul, N.2016 Determining flow through a fracture junction in a complex fracture network. US Patent 9,418,184.
[30] Ladd, A. J. C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech., 21, 285-309, (1994) · Zbl 0815.76085 · doi:10.1017/S0022112094001771
[31] Ladd, A. J. C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech., 271, 311-339, (1994) · Zbl 0815.76085 · doi:10.1017/S0022112094001783
[32] Lashgari, I.; Picano, F.; Breugem, W. P.; Brandt, L., Channel flow of rigid sphere suspensions: particle dynamics in the inertial regime, Intl J. Multiphase Flow, 78, 12-24, (2016) · doi:10.1016/j.ijmultiphaseflow.2015.09.008
[33] Liepsch, D.; Moravec, S., Measurement and calculations of laminar flow in a ninety degree bifurcation, J. Biomech., 15, 7, 473-485, (1982) · doi:10.1016/0021-9290(82)90001-X
[34] Matas, J. P.; Morris, J. F.; Guazzelli, E., Inertial migration of rigid spherical particles in Poiseuille flow, J. Fluid Mech., 515, 171-195, (2004) · Zbl 1130.76301 · doi:10.1017/S0022112004000254
[35] Matas, J. P.; Morris, J. F.; Guazzelli, E., Lateral force on a rigid sphere in large-inertia laminar pipe flow, J. Fluid Mech., 621, 59-67, (2009) · Zbl 1171.76348 · doi:10.1017/S0022112008004977
[36] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261, (2005) · Zbl 1117.76049 · doi:10.1146/annurev.fluid.37.061903.175743
[37] Miura, K.; Itano, T.; Sugihara-Seki, M., Inertial migration of neutrally buoyant spheres in a pressure-driven flow through square channels, J. Fluid Mech., 749, 320-330, (2014) · doi:10.1017/jfm.2014.232
[38] Morris, J. F.; Boulay, F., Curvilinear flows of noncolloidal suspensions: the role of normal stresses, Soc. Rheol., 48, 5, 1213-1237, (1999) · doi:10.1122/1.551021
[39] Morris, J. F., A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow, Rheol. Acta, 48, 909-923, (2009) · doi:10.1007/s00397-009-0352-1
[40] Moshkin, N.; Yambangwi, D., Steady viscous incompressible flow driven by a pressure difference in a planar T-junction channel, Intl J. Comput. Fluid Dyn., 23, 3, 259-270, (2009) · Zbl 1184.76749 · doi:10.1080/10618560902815204
[41] Neary, V. S.; Sotiropoulos, F., Numerical investigation of laminar flows through 90-degree diversions of rectangular cross-section, Comput. Fluids, 25, 2, 95-118, (1996) · Zbl 0875.76337 · doi:10.1016/0045-7930(95)00030-5
[42] Nguyen, N.-Q.; Ladd, A., Lubrication corrections for lattice-Boltzmann simulations of particle suspensions, Phys. Rev. E, 66, 4, (2002)
[43] Nott, P. R.; Brady, J. F., Pressure-driven flow of suspensions: simulation and theory, J. Fluid Mech., 275, 157-199, (1994) · Zbl 0925.76835 · doi:10.1017/S0022112094002326
[44] Pedley, T. J., The Fluid Mechanics of Large Blood Vessels, (2008), Cambridge University Press · Zbl 1152.76005
[45] Pries, A. R.; Secomb, P.; Gaehtgens, P.; Gross, J. F., Blood flow in microvascular networks, Circulat. Res., 67, 826-834, (1990) · doi:10.1161/01.RES.67.4.826
[46] Roberts, B. W.; Olbricht, W. L., Flow-induced particulate separations, AIChE J., 49, 11, 2842-2849, (2006) · doi:10.1002/aic.690491116
[47] Roscoe, R., The viscosity of suspension of rigid spheres, Brit. J. Appl. Phys., 3, 267-269, (1952) · doi:10.1088/0508-3443/3/8/306
[48] Rubinow, S. I.; Keller, J. B., The transverse force on a spinning sphere moving in a viscous fluid, J. Fluid Mech., 11, 447-459, (1961) · Zbl 0103.19503 · doi:10.1017/S0022112061000640
[49] Saffman, P. G., The lift on a small sphere in a slow shear flow, J. Fluid Mech., 22, 385-400, (1965) · Zbl 0218.76043 · doi:10.1017/S0022112065000824
[50] Schonberg, J. A.; Hinch, E. J., Inertial migration of a sphere in Poiseuille flow, J. Fluid Mech., 203, 517-524, (1989) · Zbl 0675.76038 · doi:10.1017/S0022112089001564
[51] Segré, G.; Silberberg, A., Radial particle displacements in Poiseuille flow of suspensions, Nature, 189, 109-210, (1961)
[52] Shen, H. H., Satake, M., Mehrabadi, M., Chang, C. S. & Campbell, C. S.(Eds) 1992Advances in Micromechanics of Granular Materials. Elsevier.
[53] Warpinski, N. R.; Mayerhofer, M. J.; Vincet, M. C.; Cipolla, C. L.; Lolon, E. P., Stimulating unconventional reservoirs: maximizing network growth while optimizing fracture conductivity, J. Can. Petrol. Technol., 48, 10, 39-51, (2009) · doi:10.2118/114173-PA
[54] Xi, C.; Shapley, N. C., Flow of a concentrated suspension through an axisymmetric bifurcation, J. Rheol., 52, 2, 625-647, (2008) · doi:10.1122/1.2833469
[55] Yan, Z.-Y.; Acrivos, A.; Weinbaum, S., A three-dimensional analysis of plasma skimming at microvascular bifurcations, Microvasc. Res., 42, 1, 17-38, (1991) · doi:10.1016/0026-2862(91)90072-J
[56] Zarraga, I. E.; Hill, D. A.; Leighton, D. T., The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids, J. Rheol., 44, 185-220, (2000) · doi:10.1122/1.551083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.