×

zbMATH — the first resource for mathematics

T-duality without isometry via extended gauge symmetries of 2D sigma models. (English) Zbl 1388.81300
Summary: Target space duality is one of the most profound properties of string theory. However it customarily requires that the background fields satisfy certain invariance conditions in order to perform it consistently; for instance the vector fields along the directions that T-duality is performed have to generate isometries. In the present paper we examine in detail the possibility to perform T-duality along non-isometric directions. In particular, based on a recent work of Kotov and Strobl, we study gauged 2D sigma models where gauge invariance for an extended set of gauge transformations imposes weaker constraints than in the standard case, notably the corresponding vector fields are not Killing. This formulation enables us to follow a procedure analogous to the derivation of the Buscher rules and obtain two dual models, by integrating out once the Lagrange multipliers and once the gauge fields. We show that this construction indeed works in non-trivial cases by examining an explicit class of examples based on step 2 nilmanifolds.

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Polchinski, Dualities of fields and strings, arXiv:1412.5704 [INSPIRE]. · Zbl 1371.81213
[2] Giveon, A.; Porrati, M.; Rabinovici, E., Target space duality in string theory, Phys. Rept., 244, 77, (1994)
[3] Buscher, TH, A symmetry of the string background field equations, Phys. Lett., B 194, 59, (1987)
[4] Buscher, TH, Path integral derivation of quantum duality in nonlinear sigma models, Phys. Lett., B 201, 466, (1988)
[5] Roček, M.; Verlinde, EP, Duality, quotients and currents, Nucl. Phys., B 373, 630, (1992)
[6] Hull, CM; Spence, BJ, The gauged nonlinear sigma model with Wess-Zumino term, Phys. Lett., B 232, 204, (1989)
[7] Hull, CM; Spence, BJ, The geometry of the gauged sigma model with Wess-Zumino term, Nucl. Phys., B 353, 379, (1991)
[8] Hull, CM, Global aspects of T-duality, gauged sigma models and T-folds, JHEP, 10, 057, (2007)
[9] Ossa, XC; Quevedo, F., Duality symmetries from nonabelian isometries in string theory, Nucl. Phys., B 403, 377, (1993) · Zbl 1030.81513
[10] Alvarez, E.; Álvarez-Gaumé, L.; Barbon, JLF; Lozano, Y., Some global aspects of duality in string theory, Nucl. Phys., B 415, 71, (1994) · Zbl 1007.81529
[11] Alvarez, E.; Álvarez-Gaumé, L.; Lozano, Y., On non-abelian duality, Nucl. Phys., B 424, 155, (1994) · Zbl 0990.81648
[12] Plauschinn, E., T-duality revisited, JHEP, 01, 131, (2014) · Zbl 1333.81268
[13] Plauschinn, E., On T-duality transformations for the three-sphere, Nucl. Phys., B 893, 257, (2015) · Zbl 1348.81382
[14] Kotov, A.; Strobl, T., Gauging without initial symmetry, J. Geom. Phys., 99, 184, (2016) · Zbl 1388.70018
[15] Strobl, T., Algebroid Yang-Mills theories, Phys. Rev. Lett., 93, 211601, (2004) · Zbl 1062.53068
[16] Bojowald, M.; Kotov, A.; Strobl, T., Lie algebroid morphisms, Poisson sigma models and off-shell closed gauge symmetries, J. Geom. Phys., 54, 400, (2005) · Zbl 1076.53102
[17] A. Kotov and T. Strobl, Generalizing geometry — Algebroids and sigma models, arXiv:1004.0632 [INSPIRE]. · Zbl 1200.53084
[18] Salnikov, V.; Strobl, T., Dirac sigma models from gauging, JHEP, 11, 110, (2013)
[19] Kotov, A.; Salnikov, V.; Strobl, T., 2D gauge theories and generalized geometry, JHEP, 08, 021, (2014) · Zbl 1333.81257
[20] Mayer, C.; Strobl, T., Lie algebroid Yang-Mills with matter fields, J. Geom. Phys., 59, 1613, (2009) · Zbl 1177.53024
[21] Klimčík, C.; Ševera, P., Dual nonabelian duality and the Drinfeld double, Phys. Lett., B 351, 455, (1995) · Zbl 1022.81692
[22] Klimčík, C., Poisson-Lie T duality, Nucl. Phys. Proc. Suppl., 46, 116, (1996) · Zbl 0957.81598
[23] Klimčík, C.; Ševera, P., Poisson-Lie T duality and loop groups of Drinfeld doubles, Phys. Lett., B 372, 65, (1996) · Zbl 1037.81576
[24] Sfetsos, K., Canonical equivalence of nonisometric sigma models and Poisson-Lie T duality, Nucl. Phys., B 517, 549, (1998) · Zbl 0945.81022
[25] Davidović, L.; Sazdović, B., T-dualization in a curved background in absence of a global symmetry, JHEP, 11, 119, (2015) · Zbl 1388.81516
[26] Kotov, A.; Strobl, T., Curving Yang-Mills-Higgs gauge theories, Phys. Rev., D 92, 085032, (2015)
[27] A. Chatzistavrakidis, A. Deser, L. Jonke and T. Strobl, Gauging of foliations and universal gauge theory for bosonic strings, in preparation. · Zbl 1373.81299
[28] Hull, CM; Reid-Edwards, RA, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP, 09, 014, (2009)
[29] Reid-Edwards, RA, Flux compactifications, twisted tori and doubled geometry, JHEP, 06, 085, (2009)
[30] M. Goze and Y. Khakimdjanov, Nilpotent Lie algebras, Mathematics and its Applications volume 361, Kluwer Academic Publishers Group, Dordrecht, The Netherlands (1996). · Zbl 0845.17012
[31] P. Ševera and T. Strobl, T-duality without symmetries and DFT without coordinates, work in progress.
[32] Hull, CM, A geometry for non-geometric string backgrounds, JHEP, 10, 065, (2005)
[33] Chatzistavrakidis, A.; Jonke, L.; Lechtenfeld, O., Sigma models for genuinely non-geometric backgrounds, JHEP, 11, 182, (2015) · Zbl 1388.81168
[34] Blumenhagen, R.; Deser, A.; Lüst, D.; Plauschinn, E.; Rennecke, F., Non-geometric fluxes, asymmetric strings and nonassociative geometry, J. Phys., A 44, 385401, (2011) · Zbl 1229.81220
[35] Andriot, D.; Larfors, M.; Lüst, D.; Patalong, P., (non-)commutative closed string on T-dual toroidal backgrounds, JHEP, 06, 021, (2013) · Zbl 1342.81630
[36] Bakas, I.; Lüst, D., T-duality, quotients and currents for non-geometric closed strings, Fortsch. Phys., 63, 543, (2015) · Zbl 1338.81311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.