×

zbMATH — the first resource for mathematics

Bosonization and generalized Mandelstam soliton operators. (English) Zbl 1191.81151
Summary: The generalized massive Thirring model (GMT) with three fermion species is bosonized in the context of the functional integral and operator formulations and shown to be equivalent to a generalized sine-Gordon model (GSG) with three interacting soliton species. The generalized Mandelstam soliton operators are constructed and the fermion-boson mapping is established through a set of generalized bosonization rules in a quotient positive-definite Hilbert space of states. Each fermion species is mapped to its corresponding soliton in the spirit of particle/soliton duality of Abelian bosonization. In the semi-classical limit one recovers the so-called \(SU(3)\) affine Toda model coupled to matter fields (ATM) from which the classical GSG and GMT models were recently derived in the literature. The intermediate ATM-like effective action possesses some spinors resembling the higher grading fields of the ATM theory which have non-zero chirality. These fields are shown to disappear from the physical spectrum, thus providing a bag-model-like confinement mechanism and leading to the appearance of massive fermions (solitons). The ordinary MT/SG duality turns out to be related to each \(SU(2)\) sub-group. The higher rank Lie algebra extension is also discussed.
MSC:
81T10 Model quantum field theories
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] M. Stone, Bosonization, 1st edition (World Scientific, Singapore 1994)
[2] E. Abdalla, M.C.B. Abdalla, K.D. Rothe, Non-perturvative methods in two-dimensional quantum field theory, 2nd edition (World Scientific, Singapore 2001) · Zbl 0983.81037
[3] S. Coleman, Phys. Rev. D 11, 2088 (1975); S. Mandelstam, Phys. Rev. D 11, 3026 (1975)
[4] J. Acosta, H. Blas, J. Math. Phys. 43, 1916 (2002); H. Blas, Generalized sine-Gordon and massive Thirring models, to appear in Progress in Soliton Research (Nova Science Publishers, 2004) · Zbl 1059.81158
[5] H. Blas, JHEP 0311, 054 (2003)
[6] C.M. Naón, Phys. Rev. D 31, 2035 (1985)
[7] M.B. Halpern, Phys. Rev. D 12, 1684 (1975); Phys. Rev. D 13, 337 (1976)
[8] T. Banks, D. Horn, H. Neuberger, Nucl. Phys. B 108, 119 (1976)
[9] E. Witten, Commun. Math. Phys. 92, 455 (1984) · Zbl 0536.58012
[10] Q.-Han Park, H.J. Shin, Nucl. Phys. B 506, 537 (1997) · Zbl 0925.81077
[11] L.V. Belvedere, R.L.P.G. Amaral, Phys. Rev. D 62, 065009 (2000); L.V. Belvedere, J. Phys. A 33, 2755 (2000)
[12] H. Blas, Nucl. Phys. B 596, 471 (2001); see also hep-th/0005037 · Zbl 0972.81168
[13] H. Blas, L.A. Ferreira, Nucl. Phys. B 571, 607 (2000) · Zbl 0947.81033
[14] H. Blas, B.M. Pimentel, Annals Phys. 282, 67 (2000) · Zbl 1112.81336
[15] A.G. Bueno, L.A. Ferreira, A.V. Razumov, Nucl. Phys. B 626, 463 (2002) · Zbl 0985.81116
[16] L.A. Ferreira, J.-L. Gervais, J. Sánchez Guillen, M.V. Saveliev, Nucl. Phys. B 470, 236 (1996) · Zbl 1003.81552
[17] H. Blas, Phys. Rev. D 66, 127701 (2002); see also hep-th/0005130
[18] S. Brazovskii, J. Phys. IV 10, 169 (2000); also in cond-mat/0006355; A.J. Heeger, S. Kivelson, J.R. Schrieffer, W. -P. Wu, Rev. Mod. Phys. 60, 782 (1988)
[19] D.G. Barci, L. Moriconi, Nucl. Phys. B 438, 522 (1995) · Zbl 1052.81690
[20] R. Jackiw, C. Rebbi, Phys. Rev. D 13, 3398 (1976); J. Goldstone, F. Wilczek, Phys. Rev. Lett. 47, 986 (1981); J.A. Mignaco, M.A. Rego Monteiro, Phys. Rev. D 31, 3251 (1985)
[21] R. Rajaraman, Solitons and instantons (North-Holland, Amsterdam 1982) · Zbl 0493.35074
[22] M.A. Lohe, Phys. Rev. D 52, 3643 (1995); M.A. Lohe, C.A. Hurst, Phys. Rev. D 37, 1094 (1988)
[23] A.M. Polyakov, P.B. Wiegman, Phys. Lett. B 131, 121 (1983); B 141, 224 (1984)
[24] E. Witten, Nucl. Phys. B 145, 110 (1978)
[25] Y. Frishman, J. Sonnenschein, Phys. Rep. 223, 309 (1993)
[26] V. Juricic, B. Sazdovic, Eur. Phys. J. C 32, 443 (2004) · Zbl 1099.81516
[27] M.I. Eides, Phys. Lett. B 153, 157 (1985)
[28] H. Blas, invited paper for Progress in Boson Research (Nova Science Publishers, 2005)
[29] R.K. Kaul, R. Rajaraman, Int. J. Mod. Phys. A 8, 1815 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.