zbMATH — the first resource for mathematics

Transient analysis of an M/M/\(c\) queuing system with balking and retention of reneging customers. (English) Zbl 1387.60137
Summary: In this paper, we study an infinite capacity multi-server Markovian queuing system with balking and retention of reneging customers. The transient analysis of the model is performed. The probability generating function technique along with Bessel function properties is used to derive the time-dependent state probabilities explicitly.

60K25 Queueing theory (aspects of probability theory)
90B22 Queues and service in operations research
Full Text: DOI
[1] Abou-El-Ata, M. O., and A. M. A. Hariri. 1992. The M/M/c/N queue with balking and reneging. Computers & Operations Research 19 (8):713-6.
[2] Altman, E., and U. Yechiali. 2008. Infinite-server queues with systems additional tasks and impatient customers. Probability in the Engineering and Informational Sciences 22 (4):477-93. · Zbl 1228.60096
[3] Al-Seedy, R. O., A. A. El-Sherbiny, S. A. El-Shehawy, and S. I. Ammar. 2009. Transient solution of the M/M/c queue with balking and reneging. Computers & Mathematics with Applications 57 (8):1280-85. · Zbl 1186.90033
[4] Ammar, S. I. 2015. Transient analysis of M/M/1 queue with impatient behavior and multiple vacations. Applied Mathematics and Computation 260 (1):97-105. · Zbl 1410.90045
[5] Ancker. Jr., C. J., and A. V. Gafarian. 1963a. Some queuing problems with balking and reneging I. Operations Research 11 (1):88-100. · Zbl 0109.36604
[6] Ancker. Jr., C. J., and A. V. Gafarian. 1963b. Some queuing problems with balking and reneging II. Operations Research 11 (6):928-37. · Zbl 0123.35805
[7] Boots, N., and H. Tijms. 1999. An M/M/c queue with impatient customers. TOP 7 (2):213-20.
[8] Choudhury, A., and P. Medhi. 2011. A simple analysis of customers impatience in multi-server queues. International Journal of Applied Management Science 3 (3):294-315.
[9] Falin, G. I., and J. R. Artalejo. 1995. Approximations for multi-server queues with balking/retrial discipline. OR Spectrum 17 (4):239-44. · Zbl 0843.90046
[10] Haight, F. A.1957. Queuing with balking. Biometrika. 44 (3-4):360-369.
[11] Haight, F. A.1959. Queuing with reneging. Metrika. 2 (1):186-97. · Zbl 0117.13601
[12] Ibrahim, R., and W. Whitt. 2009. Real-time delay estimation in overloaded multi-server queues with abandonments. Management Science 55 (10):1729-42. · Zbl 1232.90149
[13] Kapodistria, S. (2011). The M/M/1 queue with synchronized abandonments. Queuing System 68 (1):79-109. · Zbl 1217.90071
[14] Kumar, B. K., P. R. Parthasarthy, and M. Sharafali. 1993. Transient solution of M/M/1 queue with balking. Queuing System 13:441-8. · Zbl 0772.60077
[15] Kumar, B. K., and S. Pavai Madheswari. 2005. Transient Analysis of an M/M/1 Queue Subject to Catastrophes and Server Failures. Stochastic Analysis and Applications 23:329-40. · Zbl 1066.60084
[16] Kumar, B. K., A. Krishnamoorthy, S. Pavai Madheswari, and S. Sadiq Basha. 2007. Transient analysis of a single server queue with catastrophes, failures and repairs. Queueing System 56:133-41. · Zbl 1124.60073
[17] Kumar, B. K., A. Vijayakumar, and S. Sophia. 2008. Transient analysis for state-dependent queues with catastrophes. Stochastic Analysis and Applications 26:1201-17. · Zbl 1153.60394
[18] Kumar, R. 2012. A catastrophic-cum-restorative queuing problem with correlated input and impatient customers. International Journal of Agile Systems and Management 5 (2):122-31.
[19] Kumar, R., and S. K. Sharma. 2012a. M/M/1/N queuing system with retention of reneged customers. Pakistan Journal of Statistics and Operation Research 8 (4):859-66. · Zbl 1362.90141
[20] Kumar, R., and S. K. Sharma. 2012b. An M/M/1/N queuing model with retention of reneged customers and balking. American Journal of Operations Research 2 (1):1-5.
[21] Kumar, Rakesh, and Sumeet Kumar Sharma. 2014. An Markovian multi-server queuing model with retention of reneged customers and balking. International Journal of Operational Research 20 (4):427-38. · Zbl 1362.90142
[22] Montazer-Hagighi, A., J. Medhi, and S. G. Mohanty. 1986. On a multi-server Markovian queuing system with balking and reneging. Computers & Operations Research 13 (4):421-5. · Zbl 0619.90025
[23] Montazer Haghighi, Aliakbar. 1998. An analysis of a parallel multi-processor system with task split and feedback. Computers & Operations Research 25 (11):948-56. · Zbl 1042.68530
[24] Obert, E. R. 1979. Reneging phenomenon of single channel queues. Mathematics of Operations Research 4:162-78.
[25] Pavai, Madheswari, S., Suganthi, P., and S. A. Josephine. 2016. Retrial queueing system with retention of reneging customers. International Journal of Pure and Applied Mathematics 106 (5):11-20.
[26] Raju, S. N., and U. N. Bhat. 1982. A computationally oriented analysis of the G/M/1 queue. Opsearch 19:67-83. · Zbl 0487.90052
[27] Shin, Y. W., and T. S. Choo. 2009. M/M/s queue with impatient customers and retrials. Applied Mathematical Modelling 33 (6):2596-606. · Zbl 1205.90092
[28] Singh, Charanjeet, Madhu Jain, and Binay Kumar. 2016. Analysis of single server finite queuing model with reneging. International Journal of Operational Research 9 (1):15-38.
[29] Subba Rao, S.. 1965. Queueing models with balking, reneging and interruptions. Operations Research 13:596-608. · Zbl 0253.60082
[30] Subba Rao, S.. 1967. Queueing models with balking and reneging in M/G/1 system. Metrika 2 (1):173-88. · Zbl 0177.46004
[31] Sudhesh, R. 2010. Transient analysis of a queue with system disasters and customer impatience. Queuing System 66 (1):95-105. · Zbl 1197.60087
[32] Sudhesh, R., P. Savitha, and S. Dharmaraja. 2016. Transient analysis of a two-heterogeneous servers queue with system disaster, server repair and customers impatience. TOP. doi:10.1007/s11750-016-0428-x. · Zbl 1364.60124
[33] Vijaya, Laxmi, P., and K. Jyothsna. 2015. Analysis of finite buffer renewal input queue with balking and Markovian service process. International Journal of Mathematical Modelling Computer 5 (2):173-84.
[34] Vasiliadis, G. 2014. Transient analysis of the M/M/k/N/N queue using a continuous time homogeneous Markov system with finite state size capacity. Communications in Statistics-Theory and Methods 43:1548-62. · Zbl 1290.90032
[35] Wang, Z., and X. Lei. 2010. Study on customer retention under dynamic markets. Second International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC). 24-25 April 2010, Wuhan, Hubei, 514-7.
[36] Xiong, W., and T. Altiok. 2009. An approximation for multi-server queues with deterministic reneging times. Annals of Operations Research 172 (1):143-51. · Zbl 1181.90081
[37] Yechiali, Uri. 2007. Queues with system disasters and impatient customers when system is down. Queuing System 56 (3):195-202. · Zbl 1124.60076
[38] Zohar, E., A. Mandelbaum, and N. Shimkin. 2002. Adaptive behaviour of impatient customers in tele-queues: Theory and empirical support. Management Science 48 (4):566-83. · Zbl 1232.90300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.