×

Thermal lattice Boltzmann simulations of natural convection with complex geometry. (English) Zbl 1365.76255

Summary: Thermal boundary condition of lattice Boltzmann method to simulate natural convection embedded with complex solid object is proposed. This is achieved by denoting the closest nodes adjacent to the boundary in the fluid domain as boundary nodes of the flow domain. The temperature of the boundary node is obtained by linear interpolation between the temperature of the solid object and the second fluid node further away. Then distribution functions originates from the solid domain at the boundary nodes are modified using known distribution functions and correctors to satisfy the momentum and energy. The technique is examined by simulating thermal Couette flow with wall injection, transient thermal flow induced by an abruptly rotating heated ring and nature convection in an annulus between a square outer cavity and a circular inner cylinder. Numerical simulations indicate that this method is second order accurate, and all the numerical results are compatible with the benchmark solutions.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76R10 Free convection
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kuehn, T. H.; Goldstein, R. J., An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders, J Fluid Mech, 74, 695 (1976) · Zbl 0323.76071
[2] Moukalled, F.; Acharya, S., Natural convection in the annulus between concentric horizontal circular and square cylinders, J Thermophys Heat Transf, 10, 524 (1996)
[3] Kim, B. S.; Lee, D. S.; Ha, M. Y.; Yoon, H. S., A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical location, Int J Heat Mass Transf, 51, 1888 (2008) · Zbl 1140.80337
[4] Liao, C. C.; Lin, C. A., Simulations of natural and forced convection flows with moving embedded object using immersed boundary method, Comput Methods Appl Mech Eng, 213-216, 58 (2012) · Zbl 1243.76072
[5] Liao CC, Lin CA. Influences of a confined elliptic cylinder at different aspect ratios and inclinations on the laminar natural and mixed convection flows. Int J Heat Mass Transf 2012. <http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.06.073; Liao CC, Lin CA. Influences of a confined elliptic cylinder at different aspect ratios and inclinations on the laminar natural and mixed convection flows. Int J Heat Mass Transf 2012. <http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.06.073
[6] Qian, Y. H.; D’Humiéres, D.; Lallemand, P., Lattice BGK model for Navier-Stokes equation, Europhys Lett, 17, 479 (1992) · Zbl 1116.76419
[7] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Ann Rev Fluid Mech, 30, 329 (1998) · Zbl 1398.76180
[8] Yu, D. Z.; Mei, R. W.; Luo, L. S.; Shyy, W., Viscous flow computations with the method of lattice Boltzmann equation, Prog Aesop Sci, 39, 329 (2003)
[9] Yasuda, T.; Satofuka, N., An improved entropic lattice Boltzmann model for parallel computation, Comput Fluids, 45, 187 (2011) · Zbl 1430.76028
[10] Lin, L. S.; Chen, Y. C.; Lin, C. A., Multi relaxation time lattice Boltzmann simulations of deep lid driven cavity flows at different aspect ratios, Comput Fluids, 45, 233 (2011) · Zbl 1430.76020
[11] Shih, C. H.; Wu, C. L.; Chang, L. C.; Lin, C. A., Lattice Boltzmann simulations of incompressible liquid-gas systems on partial wetting surfaces, Philos Trans Roy Soc A - Math Phys Eng Sci, 369, 2510 (2011) · Zbl 1223.76089
[12] Falcucci, G.; Ubertini, S.; Biscarini, C.; Di Francesco, S.; Chiappini, D.; Palpacelli, S., Lattice Boltzmann methods for multiphase flow simulations across scales, Commun Comput Phys, 9, 269 (2011) · Zbl 1364.76174
[13] Murayama, T.; Yoshino, M.; Hirata, T., Three-dimensional lattice Boltzmann simulation of two-phase flow containing a deformable body with a viscoelastic membrane, Commun Comput Phys, 9, 1397 (2011)
[14] Bespalko, D.; Pollard, A.; Uddin, M., Analysis of the pressure fluctuations from an LBM simulation of turbulent channel flow, Comput Fluids, 54, 143 (2012) · Zbl 1291.76255
[15] McNamara, G.; Garcia, A. L.; Alder, B. J., Stabilization of thermal lattice Boltzmann models, J Stat Phys, 81, 395 (1995) · Zbl 1106.82353
[16] He, X.; Chen, S.; Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J Comput Phys, 146, 282 (1998) · Zbl 0919.76068
[17] Peng, Y.; Shu, C.; Chew, Y. T., Simplified thermal lattice Boltzmann model for incompressible thermal flows, Phys Rev E, 68, 026701 (2003)
[18] Liu, C. H.; Lin, K. H.; Mai, H. C.; Lin, C. A., Thermal boundary conditions for thermal lattice Boltzmann simulations, Comput Math Appl, 59, 2178 (2010) · Zbl 1193.80027
[19] Lallemand, P.; Luo, L. S., Hybrid finite-difference thermal lattice Boltzmann equation, Int J Mod Phys B, 17, 41 (2003)
[20] Lallemand, P.; Luo, L. S., Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions, Phys Rev E, 68, 036706 (2003)
[21] Filippova, O.; Hänel, D., Grid refinement for lattice-BGK models, J Comput Phys, 147, 219 (1998) · Zbl 0917.76061
[22] Mei, R.; Luo, L. S.; Shyy, W., An accurate curved boundary treatment in the lattice Boltzmann method, J Comput Phys, 155, 307 (1999) · Zbl 0960.82028
[23] Lallemand, P.; Luo, L. S., Lattice Boltzmann method for moving boundaries, J Comput Phys, 184, 406 (2003) · Zbl 1062.76555
[24] Chang, C.; Liu, C. H.; Lin, C. A., Boundary conditions for lattice Boltzmann simulations with complex geometry flows, Comput Math Appl, 58, 940 (2009) · Zbl 1189.76402
[25] Zou, Q.; He, X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys Fluids, 9, 1591 (1997) · Zbl 1185.76873
[26] Junk, M.; Yang, Z. X., One-point boundary condition for the lattice Boltzmann method, Phys Rev E, 72, 066701 (2005)
[27] Ho, C. F.; Chang, C.; Lin, K. H.; Lin, C. A., Consistent boundary conditions for 2D and 3D laminar lattice Boltzmann simulations, CMES - Comp Model Eng Sci, 44, 137 (2009) · Zbl 1357.76068
[28] Hecht, M.; Harting, J., Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations, J Stat Mech - Theory Exp, P01018 (2010)
[29] Liao, C. C.; Chang, Y. W.; Lin, C. A.; McDonough, J. M., Simulating flows with moving rigid boundary using immersed-boundary method, Comput Fluids, 39, 152 (2010) · Zbl 1242.76174
[30] Chen, D. J.; Lin, K. H.; Lin, C. A., Immersed boundary method based lattice Boltzmann method to simulate 2D and 3D complex geometry flows, Int J Mod Phys, 18, 585 (2007) · Zbl 1206.76044
[31] Mai, H. C.; Lin, K. H.; Yang, C. H.; Lin, C. A., A thermal lattice Boltzmann model for flows with viscous heat dissipation, CMES - Comp Model Eng Sci, 61, 45 (2010) · Zbl 1231.76234
[32] He, X.; Zou, Q.; Luo, L. S.; Dembo, D., Analytic solution of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J Stat Phys, 87, 115 (1997) · Zbl 0937.82043
[33] Guo, Z. L.; Zheng, C. G.; Shi, B. C., Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys Rev E, 65, 046308 (2002) · Zbl 1244.76102
[34] He, X.; Luo, L. S., Lattice Boltzmann model for the incompressible Navier-Stokes equation, J Stat Phys, 88, 927 (1997) · Zbl 0939.82042
[35] Shu, C.; Xue, H.; Zhu, Y. D., Numerical study of natural convection in an eccentric annulus between a square outer cylinder and a circular inner cylinder using DQ method, Int J Heat Mass Transf, 44, 3321 (2001) · Zbl 1006.76548
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.