Jordan, David A. Ore extensions and Poisson algebras. (English) Zbl 1372.16025 Glasg. Math. J. 56, No. 2, 355-368 (2014). Summary: For a derivation \(\delta\) of a commutative Noetherian \(\mathbb C\)-algebra \(A\), a homeomorphism is established between the prime spectrum of the Ore extension \(A[z;\delta]\) and the Poisson prime spectrum of the polynomial algebra \(A[z]\) endowed with the Poisson bracket such that \(\{A,A\}=0\) and \(\{z,a\}=\delta(a)\) for all \(a \in A\). Cited in 6 Documents MSC: 16S36 Ordinary and skew polynomial rings and semigroup rings 13N15 Derivations and commutative rings 17B63 Poisson algebras Keywords:derivation of commutative Noetherian \(\mathbb C\)-algebra; homeomorphism; prime spectrum of Ore extension; Poisson prime spectrum of polynomial algebra PDF BibTeX XML Cite \textit{D. A. Jordan}, Glasg. Math. J. 56, No. 2, 355--368 (2014; Zbl 1372.16025) Full Text: DOI arXiv References: [1] DOI: 10.1081/AGB-100106804 · Zbl 1014.13007 · doi:10.1081/AGB-100106804 [2] DOI: 10.1017/S0305004198002965 · Zbl 0935.16017 · doi:10.1017/S0305004198002965 [3] DOI: 10.1007/978-3-0348-8205-7 · doi:10.1007/978-3-0348-8205-7 [4] DOI: 10.1007/BF01246126 · Zbl 0522.16003 · doi:10.1007/BF01246126 [5] DOI: 10.1080/00927870500454463 · Zbl 1135.17012 · doi:10.1080/00927870500454463 [6] DOI: 10.4064/cm113-1-3 · Zbl 1223.13015 · doi:10.4064/cm113-1-3 [7] DOI: 10.1142/S0219498809003564 · Zbl 1188.16022 · doi:10.1142/S0219498809003564 [8] DOI: 10.1090/conm/562/11136 · Zbl 1273.17027 · doi:10.1090/conm/562/11136 [9] DOI: 10.1007/s10468-008-9104-7 · Zbl 1239.17019 · doi:10.1007/s10468-008-9104-7 [10] DOI: 10.1093/qmath/32.4.417 · Zbl 0471.13014 · doi:10.1093/qmath/32.4.417 [11] DOI: 10.1017/S0017089500003086 · Zbl 0347.16020 · doi:10.1017/S0017089500003086 [12] Goodearl, Advances in ring theory pp 165– (2009) [13] DOI: 10.1112/jlms/s2-10.3.281 · Zbl 0313.16011 · doi:10.1112/jlms/s2-10.3.281 [14] DOI: 10.1090/conm/419/08001 · doi:10.1090/conm/419/08001 [15] Jacobson, Structure of rings (1964) [16] DOI: 10.1016/S0021-8693(05)80036-5 · Zbl 0779.16010 · doi:10.1016/S0021-8693(05)80036-5 [17] DOI: 10.1007/s11253-009-0225-x · Zbl 1224.33008 · doi:10.1007/s11253-009-0225-x [18] DOI: 10.1080/00927879508825493 · Zbl 0841.17012 · doi:10.1080/00927879508825493 [19] DOI: 10.1007/BF01214722 · Zbl 0495.16002 · doi:10.1007/BF01214722 [20] Dixmier, Enveloping algebras (1996) [21] DOI: 10.1112/plms/s3-45.1.49 · doi:10.1112/plms/s3-45.1.49 [22] DOI: 10.1016/j.jalgebra.2008.01.046 · Zbl 1152.13019 · doi:10.1016/j.jalgebra.2008.01.046 [23] DOI: 10.1016/S0021-8693(03)00099-1 · Zbl 1047.16018 · doi:10.1016/S0021-8693(03)00099-1 [24] Kaplansky, Commutative rings (1970) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.