×

Investigation of cumulative growth process via Fibonacci method and fractional calculus. (English) Zbl 1410.33032

Summary: In this study, cumulative growth of a physical quantity with Fibonacci method and fractional calculus is handled. The development of the growth process is described in terms of Fibonacci numbers, Mittag-Leffler and exponential functions. A compound growth process with the contribution of a constant quantity is also discussed. For the accumulation of residual quantity, equilibrium and lessening cases are discussed. To the best of our knowledge; compound growth process is solved for the first time in the framework of fractional calculus. In this sense, differintegral order of fractional calculus \(\alpha\) has been achieved a physical content. It is emphasized that, in the basis of qualification of the fractional calculus for describing genuine complex physical systems with respect to ordinary descriptions is the cumulative growth mechanism with Fibonacci method. It is concluded that compound diminution and growth process mechanisms can be taken as a basis for the comprehension of derivative and integral operations in fractional calculus.

MSC:

33E12 Mittag-Leffler functions and generalizations
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
26A33 Fractional derivatives and integrals

Software:

longmemo
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bazzani, A.; Bassi, G.; Turchetti, G., Diffusion and memory effects for stochastic processes and fractional Langevin equations, Phys. A, 324, 530-550, (2003) · Zbl 1050.82029
[2] Beran, J., Statistics for long-memory processes, Monographs on Statistics and Applied Probability, (1994), Chapman and Hall New York · Zbl 0869.60045
[3] Buyukkilic, F.; Demirhan, D., A fractal approach to entropy and distribution functions, Phys. Lett. A, 181, 24-28, (1993)
[4] Buyukkilic, F.; Demirhan, D.; Gulec, A., A statistical mechanical approach to generalized statistics of quantum and classical gases, Phys. Lett. A, 197, 209-220, (1995) · Zbl 1020.82504
[5] Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics, (1997), Springer Wien · Zbl 0917.73004
[6] Coffey, W. T.; Kalmykov, Y. P.; Waldron, J. T., The Langevin Equation, (2004), World Scientific Singapore · Zbl 1098.82001
[7] Doob, J. L., The Brownian movement and stochastic equations, Ann. Math., 43, 351-369, (1942) · Zbl 0063.01145
[8] Klafter, J.; Zumofen, G.; Shlesinger, M. F., Lévy description of anomalous diffusion in dynamical systems, (Shlesinger, M. R.; Zaslavsky, G. M.; Frisch, U., Lévy Fights and Related Topics in Physics, (1995), Springer Berlin) · Zbl 0829.60070
[9] Klafter, J.; Blumen, A.; Zumofen, G.; Shlesinger, M., Phys. A, 168, 637, (1990)
[10] Lindenberg, K.; West, B. J., The Nonequilibrium Statistical Mechanics of Open and Closed Systems, (1990), VCH Berlin · Zbl 0706.60105
[11] Luo, A. C.J.; Afraimovich, V., Long-Range Interactions, Stochasticity and Fractional Dynamics, (2011), Springer Berlin
[12] B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Co., New York, 1982. · Zbl 0504.28001
[13] Mandelbrot, B. B.; van Ness, J. W., Fractional Brownian motions fractional noise and applications, SIAM Rev., 10, 422-437, (1968) · Zbl 0179.47801
[14] B.B. Mandelbrot, Fractals, Form, Chance and Dimension, W.H. Freeman and Co., San Francisco, 1977. · Zbl 0376.28020
[15] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467, (1976) · Zbl 1369.37088
[16] Mazo, R. M., Brownian Motion Fluctuation, Dynamics, and Applications, (2002), Clarendon Press Oxford · Zbl 1140.60001
[17] Metzler, R.; Klafter, J., Anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77, (2000) · Zbl 0984.82032
[18] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, (1993), John Willey and Sons, Inc. New York · Zbl 0789.26002
[19] Montroll, E. W.; West, B. J., On an enriched collection of stochastic processes, (Montroll, E. W., Fluctuation Phenomena, (1987), North- Holland Amsterdam), 61-206
[20] Montroll, E. W.; Shlesinger, M. F., On the wonderful world of random walks, (Montroll, E., Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, (1983), North-Holland Amsterdam), 1-121
[21] Saxena, R. K.; Mathai, A. M.; Haubold, H. J., On generalized fractional kinetic equations, Phys. A, 344, 657-664, (2004)
[22] Saxena, R. K.; Kalla, S. L., On the solutions of certain fractional kinetic equations, Appl. Math. Comput., 199, 504-511, (2008) · Zbl 1166.76051
[23] Sandev, T.; Metzler, R.; Tomovski, Z., Correlation functions for the generalized Langevin equation in the presence of internal and external noise, J. Math. Phys., 55, 023301, (2014) · Zbl 1291.82097
[24] Scalas, E., The application of continuous-time random walks in finance and economics, Phys. A, 362, 225-239, (2006)
[25] B.J. West, P. Grigolini, Fractional Differences, Derivatives and Fractal Time Series, in Applications of Fractional Calculus in Physics, World Scientific, Singapore, 1998.
[26] West, B. J.; Bologna, M.; Grigolini, P., Physics of Fractal Operators, (2003), Springer-Verlag New York
[27] Stanislavsky, A. A., Fractional oscillator, Phys. Rev. E, 70, 051103, (2004)
[28] Tarasov, V. E.; Zaslavsky, G. M., Fractional dynamics of systems with long-range interaction, Commun. Nonlinear Sci. Numer. Simul., 11, 885-898, (2006) · Zbl 1106.35103
[29] Tarasov, V., The fractional oscillator as an open system, Cent. Eur. J. Phys., 10, 382-389, (2012)
[30] Voss, R., Evolution of long-range fractal correlations and 1/F-noise in DNA base sequences, Phys. Rev. Lett., 68, 3805-3808, (1992)
[31] Falconer, K., Fractal Geometry, (1990), John Wiley New York
[32] Zwanzig, R., The Nonequilibrium Statistical Mechanics, (2001), Oxford New York · Zbl 1267.82001
[33] Nales, A. D.V.; Wang, K. G.; Despósito, M. A., Subdiffusive behaviour in a trapping potential:mean square displacement and velocity autocorrelation function, Phys. Rev. E, 80, 021111, (2009)
[34] Buyukkilic, F.; Demirhan, D., Cumulative diminuations with Fibonacci approach, Golden sections and physics, Int. J. Theor. Phys., 47, 606-616, (2008) · Zbl 1189.83075
[35] Buyukkilic, F.; Demirhan, D., Cumulative growth with Fibonacci approach, Golden sections and physics, Chaos, Solitons Fractals, 42, 24-32, (2009)
[36] Camargo, R. F.; Chiacchio, A. O.; Charmet, R.; Capelas de Oliveira, E., Solution of the fractional Langevin equation and the Mittag-Leffler functions, J. Math. Phys., 50, 063507/1-8, (2009) · Zbl 1216.82028
[37] Camargo, R. F.; Capelas de Oliveira, E.; J. Vaz. Jr., On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator, J. Math. Phys., 50, 123518-123518-13, (2009) · Zbl 1373.82056
[38] Dunlap, R. A., The Golden Ratio and Fibonacci Numbers, (1997), World Scientific Publishing Co. Pte. Ltd. · Zbl 0968.11013
[39] H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions their applications, 2009, arXiv:0909.0230v2 [math.CA] 4 Oct. · Zbl 1218.33021
[40] S. Kak, The golden mean and the physics of aesthetics, Arch. Phys. (2004), arXiv:physics/0411195.
[41] Kilbas, A. A.; Saigo, M., On Mittag-Leffler type functions, fractional calculus operators and solution of integral equations, Integral Transform Spec. Funct., 4, 355-370, (1996) · Zbl 0876.26007
[42] Mathai, A. M.; Saxena, R. K.; Haubold, H. J., The H-Function, (2010), Springer New York · Zbl 1181.33001
[43] Schroeder, M., Fractals, Chaos, Power Laws, (1991), W.H. Freeman and Co. New York · Zbl 0758.58001
[44] Sigler, L. E., Fibonacci’s Liber Abaci, (2002), Springer-Verlag New York
[45] A. Stakhov, Dirac’s Principle of Mathematical Beauty, Mathematics of Harmony and “Golden” Scientific Revolution, The International Club of the Golden Section, McCreary Trail, Bolton, Canada, 2009.
[46] Stakhov, A., The generalized principle of the Golden section and its applications in mathematics, science, and engineering, Chaos, Solitons Fractals, 26, 263-289, (2005) · Zbl 1153.00306
[47] Stakhov, A., Fundamentals of a new kind of mathematics based on the Golden section, Chaos, Solitons Fractals, 27, 1124-1146, (2006) · Zbl 1178.00024
[48] Stakhov, A., The “golden” algebraic equations, Chaos, Solitons Fractals, 27, 1415-1421, (2006) · Zbl 1148.11009
[49] Stakhov, A., The Golden section, secrets of the Egyptian civilization and harmony mathematics, Chaos, Solitons Fractals, 30, 490-505, (2006)
[50] Vickes, T., Fractal Growth Phenomena, (1989), World Scientific Publishing Co. Pte. Ltd. · Zbl 0744.28005
[51] Perc, M., Evolution of the most common English words and phrases over the centuries, J. R. Soc. Interface, 9, 3323-3328, (2012)
[52] Perc, M., Self-organization of progress across the century of physics, Sci. Rep., 3, 1720, (2013)
[53] Petersen, A. M.; Tenenbaum, J. N.; Havlin, S.; Stanley, H. E.; Perc, M., Languages cool as they expand: allometric scaling and the decreasing need for new words, Sci. Rep., 2, 943-954, (2012)
[54] Perc, M., The matthew effect in empirical data, J. R. Soc. Interface, 11, 20140378, (2014)
[55] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives:Theory and Applications, (1993), Gordon and Breach New York · Zbl 0818.26003
[56] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differantial Equations, (2006), Elsevier B.V. Amsterdam · Zbl 1092.45003
[57] Oldham, K. B.; Spanier, J., The Fractional Calculus, Theory and Applications Differentiation and Integration to Arbitrary Order, (1974), Academic Press, Inc. California · Zbl 0292.26011
[58] Podlubny, I., Fractional Differential Equations, (1999), Academic Press California · Zbl 0918.34010
[59] Hilfer, R., Applications of Fractional Calculus in Physics, (2000), World Scientific Publishing Co. Pte. Ltd. Singapore · Zbl 0998.26002
[60] Glöcke, W. G.; Nonnenmacher, T. F., Fox function representation of non-Debye relaxation process, J. Stat. Phys., 71, 741-757, (1993) · Zbl 0945.82559
[61] Nonnenmacher, T. F.; Metzler, R., On the Riemann-Liouville fractional calculus and some recent applications, Fractals, 3, 557, (1995) · Zbl 0868.26004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.