×

The ‘life machine’: a quantum metaphor for living matter. (English) Zbl 1370.92013

Summary: Aim of this paper is to provide a scheme for the construction of a conceptual, virtual machine (the term here has a significance analogous to that of the Turing machine, i.e., a formal device which manipulates and evolves ‘states’), able to perform all that living matter – as distinguished from inert matter – can do and inanimate matter cannot, in a setting consistent exclusively with the quantum laws. In other words, the objective is to create a theoretical construct, in the form of a conceptual framework representing and providing the operational tools of a “Life Machine”.

MSC:

92B05 General biology and biomathematics
00A79 Physics

Software:

Holes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Schrödinger, E.: What is Life? Cambridge University Press, Cambridge UK (1944)
[2] Watson, J.D., Crick, F.H.C.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737-738 (1953) · doi:10.1038/171737a0
[3] Dawkins, R.: The Selfish Gene, 3rd edn. Oxford University Press, Oxford UK (2006)
[4] Prigogine, I., Nicolis, G., Babloyants, A., Thermodynamics of Evolution, (part I): Physics Today 25, 23-28 (1972). & (part II): Physics Today 25,38-44 (December 1972) · Zbl 0359.12011
[5] Weaver, W.: Science and complexity. American Scientist 36, 536-544 (1948)
[6] Belousov, B.P.: Periodically acting reaction and its mechanism, Collection of abstracts on radiation medicine 147, 145 - in Russian (1959)
[7] Zhabotinsky, A.M.: Periodic processes of malonic acid oxidation in a liquid phase (a study of the kinetics of the Belousov reaction). Biofizika 9, 306-311 (1964). - in Russian
[8] Kauffman, S.: Investigations. Oxford University Press, Oxford UK (2000)
[9] Rosen, R.: Essays on Life Itself. Columbia University Press, New York NY (1998)
[10] Alighieri, D.: The Divine Comedy (English translation H.F. Cary), at https://www.gutenberg.org/files/8800/8800-h/8800-h.htm/ ; last release (November 30, 2012) · Zbl 0692.53053
[11] Crick, F.H.C.: Central dogma of molecular biology. Nature 227(5258), 561-563 (1970) · doi:10.1038/227561a0
[12] Albert, D.Z.: On quantum mechanical automata. Phys. Lett. 98, 249-252 (1983) · doi:10.1016/0375-9601(83)90863-0
[13] Hartley, R.V.L.: Transmission of information. Bell Syst. Tech. J. 7, 535-563 (1928) · doi:10.1002/j.1538-7305.1928.tb01236.x
[14] Shannon, C.E: The Mathematical Theory of Communication. University of Illinois Press 1998, Urbana IL (1998)
[15] Rasetti, M., Merelli, E.: Topological Field Theory of Data: mining data beyond complex networks?. In: Contucci, P.L , et al. (eds.) Advances in Disordered Systems, Random Processes and some applications. Cambridge University Press 2016, Cambridge UK · Zbl 1100.82500
[16] Hopcroft, J., Kanna, R.: Foundations of Data Science (book available on web: http://blogs.siam.org/the-future-of-computer-science/) (2013)
[17] Petri, G., Scolamiero, M., Donato, I., Vaccarino, F.: Topological Strata of Weighted Complex Networks. PLoS ONE 8(6), e66506. doi:10.1371/journal.pone.0066506 · Zbl 0005.21802
[18] Carlsson, G.: Topology and data. Bull. AMS 46, 255-308 (2009) · Zbl 1172.62002 · doi:10.1090/S0273-0979-09-01249-X
[19] Edelsbrunner, H., Harer, J.: Computational Topology, an Introduction, Amer. Math. Soc. 2010, Providence RI · Zbl 1193.55001
[20] Zomorodian, A.J.: Topology of Computing. Cambridge University Press, Cambridge UK (2009) · Zbl 1182.68002
[21] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge UK (2002) · Zbl 1044.55001
[22] Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer-Verlag, New York (2006) · Zbl 1102.14041
[23] Hilton, P.J., Wylie, S.: Homology Theory: an Introduction to Algebraic Topology. Cambridge University Press, Cambridge UK (1967) · Zbl 0163.17803
[24] Witten, E.: Quantum field theory and the Jones polynomial, vol. 121 (1989) · Zbl 0726.57010
[25] Shalizi, C.R., Crutchfield, J.P.: Computational Mechanics: Pattern and Prediction, Structure and Simplicity. J. Stat. Phys. 104, 817-879 (2001) · Zbl 1100.82500 · doi:10.1023/A:1010388907793
[26] Vietoris, L.: Über den höeren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann. 97, 454-472 (1927) · JFM 53.0552.01 · doi:10.1007/BF01447877
[27] Čech, E.: Théorie générale de lhomologie dans un espace quelconque. Fund. Math. 19, 149-183 (1932) · JFM 58.0622.02
[28] Harada, M., Wilkin, G.: Morse theory of the moment map for representations of quivers. Geom. Dedicata 150, 307-353 (2011) · Zbl 1226.53081 · doi:10.1007/s10711-010-9508-5
[29] Harder, G., Narasimhan, M.S.: On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. 212, 215-248 (1974/75) · Zbl 0324.14006
[30] Gromov, M.: Structures métriques pour les variétés Riemanniennes, Conception Edn. Nathan, Paris FR (1981) · Zbl 0509.53034
[31] Fukaya, K.: Hausdorff convergence of riemannian manifolds and its applications. Advanced Studies Pure Math 18 (1990) · Zbl 0754.53004
[32] Wilkin, G.: Homotopy groups of moduli spaces of stable quiver representations, Int. J. Math., in press, Preprint: 0901.4156 (2009) · Zbl 1201.58008
[33] Diaconis, P., Khare, K., Saloff-Coste, L.: Gibbs sampling, exponential families and orthogonal polynomials. Stat. Sci. 23, 151-178 (2008) · Zbl 1327.62058 · doi:10.1214/07-STS252
[34] Yang, C.N., Mills, R.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96(1), 191-195 (1954) · Zbl 1378.81075 · doi:10.1103/PhysRev.96.191
[35] Tao, T.: (blog: http://terrytao.wordpress.com/2008/09/27/what-is-a-gauge/) (2008)
[36] Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. Ser. A 308(1505), 523-615 (1983) · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[37] Rourke, C.P., Sanderson, B.J.: Block Bundles: I, II, III. Ann. Math. 87(1), 1-28 (1968). (2) 256-278, (3) 431-483 · Zbl 0215.52204 · doi:10.2307/1970591
[38] Knill, O.: The Dirac operator of a graph, Preprint: 1306.2166v1/math.CO (2013) · Zbl 1296.05136
[39] Hodge, W.V.D.: The Theory and Applications of Harmonic Integrals. Cambridge University Press, Cambridge UK (1941) · Zbl 0024.39703
[40] B., Copeland, J.: The Church-Turing Thesis. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Summer 2015 Edn. on web: http://plato.stanford.edu/archives/sum2015/entries/church-turing/
[41] Gandy, R.O.: Church’s thesis and principles for mechanisms. In: Barwise, J., Keisler, H. J., Kunen, K. (eds.) The Kleene symposium, pp 123-148. North-Holland, Amsterdam ND (1980) · Zbl 0465.03022
[42] Gandy, R.O.: On the impossibility of using analogue machines to calculate non-computable functions, unpublished (1993)
[43] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading MA (1979) · Zbl 0426.68001
[44] Marzuoli, A., Rasetti, M.: Spin network quantum simulator. Phys. Lett. A 306, 79-87 (2002) · Zbl 1005.81015 · doi:10.1016/S0375-9601(02)01600-6
[45] Garnerone, S., Marzuoli, A., Rasetti, M.: Quantum automata, braid group and link polynomials. Quantum Inf. Comput. 7, 479-503 (2007) · Zbl 1152.81718
[46] Freedman, M.H., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation. Bull. Amer. Math. Soc. 40, 31-38 (2002) · Zbl 1019.81008 · doi:10.1090/S0273-0979-02-00964-3
[47] Atiyah, M.F.: Topological quantum field theories. Publ. Math. IHES 68, 175-186 (1989) · Zbl 0692.53053 · doi:10.1007/BF02698547
[48] Chern, S.-S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math. 99, 48-69 (1974) · Zbl 0283.53036 · doi:10.2307/1971013
[49] Marzuoli, A., Rasetti, M.: Computing spin networks. Ann. Phys. 318, 345-407 (2005) · Zbl 1072.81013 · doi:10.1016/j.aop.2005.01.005
[50] Biedenharn, L.C., Louck, J.D.: The Racah-Wigner Algebra in Quantum Theory. In: Rota, G.-C. (ed.) Encyclopedia of Mathematics and its Applications, vol. 9. Addison-Wesley Publ. Co., Reading MA (1981) · Zbl 0474.00024
[51] Wiesner, K., Crutchfield, J.P.: Computation in finitary stochastic and quantum processes. Physica D: Nonlinear Phenomena 237, 1173-1195 (2008) · Zbl 1140.68401 · doi:10.1016/j.physd.2008.01.021
[52] von Neumann, J.: The general and logical theory of automata, Hixon Symposium, September 20,1948, Pasadena, California. In: Taub, A.H. (ed.) John von Neumann Collected Works, vol. V. Pergamon Press, Oxford UK (1963) · Zbl 1043.16016
[53] von Neumann, J.: Theory of Self-reproducing Automata. In: A.W. Burks (ed.) . University of Illinois Press, Urbana ILL (1966)
[54] Deutsch, D., Marletto, C.: Constructor theory of information. Proc. R. Soc. A 471, 20140540 (2015) · Zbl 1371.81063 · doi:10.1098/rspa.2014.0540
[55] Marletto, C.: Constructor theory of life. J. R. Soc. Interface 12, 20141226 (2015) · Zbl 1371.81063 · doi:10.1098/rsif.2014.1226
[56] Schlesinger, K.-G.: On the universality of string theory. Found. Phys. Lett. 15, 523-536 (2002) · doi:10.1023/A:1023929502341
[57] Schneps, L.: The Grothendieck-Teichmller group GT: a survey. In: Schneps, L., Lochak, P. (eds.) Geometric Galois Actions , London Math. Soc. Lecture Note Ser., vol. 242, pp 183-203. Cambridge University Press, Cambridge UK (1997) · Zbl 0910.20019
[58] Schlesinger, K.-G.: A quantum analogue of the Grothendieck-Teichmüller group. J. Phys. A: Math. Gen. 35, 10189-10196 (2002) · Zbl 1043.16016 · doi:10.1088/0305-4470/35/47/315
[59] Tate, J.: Relations between k2 and Galois cohomology. Invent. Math. 36, 257-274 (1976) · Zbl 0359.12011 · doi:10.1007/BF01390012
[60] Milne, J.S.: Periods of abelian varieties. Compos. Math. 140, 1149-1175 (2004) · Zbl 1148.11312 · doi:10.1112/S0010437X04000417
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.