×

Inference in flexible families of distributions with normal kernel. (English) Zbl 1440.62191

Summary: This paper addresses the inference problem for a flexible class of distributions with normal kernel known as skew-bimodal-normal family of distributions. We obtain posterior and predictive distributions assuming different prior specifications. We provide conditions for the existence of the maximum-likelihood estimators (MLE). An EM-type algorithm is built to compute them. As a by product, we obtain important results related to classical and Bayesian inferences for two special subclasses called bimodal-normal and skew-normal (SN) distribution families. We perform a Monte Carlo simulation study to analyse behaviour of the MLE and some Bayesian ones. Considering the frontier data previously studied in the literature, we use the skew-bimodal-normal (SBN) distribution for density estimation. For that data set, we conclude that the SBN model provides as good a fit as the one obtained using the location-scale SN model. Since the former is a more parsimonious model, such a result is shown to be more attractive.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62E15 Exact distribution theory in statistics
62F10 Point estimation
62F15 Bayesian inference
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.jspi.2008.07.016 · Zbl 1153.62018 · doi:10.1016/j.jspi.2008.07.016
[2] DOI: 10.1111/j.1467-9469.2005.00426.x · Zbl 1091.62046 · doi:10.1111/j.1467-9469.2005.00426.x
[3] Azzalini A., Scand. J. Statist. 12 pp 171– (1985)
[4] DOI: 10.1111/j.1467-9469.2004.03_007.x · Zbl 1063.62079 · doi:10.1111/j.1467-9469.2004.03_007.x
[5] Wang J., Statist. Sinica. 14 pp 1259– (2004)
[6] DOI: 10.1007/BF02507031 · doi:10.1007/BF02507031
[7] DOI: 10.1016/j.jmva.2004.10.002 · Zbl 1073.62049 · doi:10.1016/j.jmva.2004.10.002
[8] DOI: 10.1111/j.1467-9469.2006.00503.x · Zbl 1117.62051 · doi:10.1111/j.1467-9469.2006.00503.x
[9] DOI: 10.1111/j.1751-5823.2007.00016.x · Zbl 1206.62102 · doi:10.1111/j.1751-5823.2007.00016.x
[10] DOI: 10.1201/9780203492000 · doi:10.1201/9780203492000
[11] DOI: 10.1002/cjs.5550340403 · Zbl 1121.60009 · doi:10.1002/cjs.5550340403
[12] DOI: 10.1080/02331880600723168 · Zbl 1120.62010 · doi:10.1080/02331880600723168
[13] Arellano-Valle, R. B., Elal-Olivero, D. and Gómez, H. W. 2008. ”A new class of symmetric distributions”. unpublished manuscript
[14] Dempster A. P., J. R. Stat. Soc. B 39 pp 1– (1977)
[15] DOI: 10.1111/1467-9868.00194 · Zbl 0924.62050 · doi:10.1111/1467-9868.00194
[16] DOI: 10.1080/02664760050120542 · Zbl 1076.62514 · doi:10.1080/02664760050120542
[17] DOI: 10.1016/j.jspi.2005.08.043 · Zbl 1098.62023 · doi:10.1016/j.jspi.2005.08.043
[18] DOI: 10.1016/j.jspi.2004.06.062 · Zbl 1077.62017 · doi:10.1016/j.jspi.2004.06.062
[19] Bayes C. L., Braz. J. Probab. Stat. 21 (2) pp 141– (2007)
[20] Azzalini A., Statistica 44 pp 199– (1986) · Zbl 0964.62001
[21] Johnson N. L., Continuous Univariate Distributions 1, 2. ed. (1994) · Zbl 0811.62001
[22] DOI: 10.1016/j.jmva.2008.04.010 · Zbl 1152.62034 · doi:10.1016/j.jmva.2008.04.010
[23] Arellano-Valle R. B., Comm. Statist. Theory Methods (2012)
[24] DOI: 10.1016/j.jmva.2008.03.009 · Zbl 1151.62042 · doi:10.1016/j.jmva.2008.03.009
[25] Lin T. I., Statist. Sinica 17 pp 909– (2007)
[26] DOI: 10.1007/s11222-006-9005-8 · doi:10.1007/s11222-006-9005-8
[27] DOI: 10.1002/env.1026 · doi:10.1002/env.1026
[28] DOI: 10.1007/s11222-010-9225-9 · Zbl 1322.62087 · doi:10.1007/s11222-010-9225-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.