×

Modelling of iron-filled magneto-active polymers with a dispersed chain-like microstructure. (English) Zbl 1406.74544

Summary: Magneto-active polymers are a class of smart materials commonly manufactured by mixing micron-sized iron particles in a rubber-like matrix. When cured in the presence of an externally applied magnetic field, the iron particles arrange themselves into chain-like structures that lend an overall anisotropy to the material. It has been observed through electron micrographs and X-ray tomographs that these chains are not always perfect in structure, and may have dispersion due to the conditions present during manufacturing or some undesirable material properties. We model the response of these materials to coupled magneto-mechanical loading in this paper using a probability based structure tensor that accounts for this imperfect anisotropy. The response of the matrix material is decoupled from the chain phase, though still being connected through kinematic constraints. The latter is based on the definition of a ‘chain deformation gradient’ and a ‘chain magnetic field’. We conclude with numerical examples that demonstrate the effect of chain dispersion on the response of the material to magnetoelastic loading.

MSC:

74N15 Analysis of microstructure in solids
74B20 Nonlinear elasticity
74F15 Electromagnetic effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bangerth, W.; Hartmann, R.; Kanschat, G., Deal.II - a general purpose object oriented finite element library, ACM Trans. Math. Softw., 33, 4, 24/1-24/27, (2007) · Zbl 1365.65248
[2] Bangerth, W.; Heister, T.; Heltai, L.; Kanschat, G.; Kronbichler, M.; Maier, M.; Turcksin, B.; Young, T. D., The deal.ii library, version 8.0, (2013), arXiv preprint
[3] Bermúdez, A.; Rodríguez, R.; Salgado, P., A finite element method for the magnetostatic problem in terms of scalar potentials, SIAM J. Numer. Analysis, 46, 3, 1338-1363, (2008) · Zbl 1171.78010
[4] Boczkowska, A.; Awietjan, S. F., Smart composites of urethane elastomers with carbonyl iron, J. Mater. Sci., 44, 15, 4104-4111, (May 2009)
[5] Boczkowska, A.; Czechowski, L.; Jaroniek, M.; Niezgoda, T., Analysis of magnetic field effect on ferromagnetic spheres embedded in elastomer pattern, J. Theor. Appl. Mech., 48, 3, 659-676, (2010)
[6] Böse, H.; Rabindranath, R.; Ehrlich, J., Soft magnetorheological elastomers as new actuators for valves, J. Intell. Mater. Syst. Struct., 23, 9, 989-994, (2012)
[7] Bossavit, A., Computational electromagnetism, Variational Formulations, Complementarity, Edge Elements, Volume 2 of Electromagnetism Series, (1998), Academic Press San Diego, ISBN 13: 978-0121187101
[8] Brigadnov, I. A.; Dorfmann, A., Mathematical modeling of magneto-sensitive elastomers, Int. J. Solids Struct., 40, 18, 4659-4674, (September 2003)
[9] Brown, W. F., Magnetoelastic interactions, (Truesdell, C., Springer Tract in Natural Philosophy, (1966), Springer-Verlag Berlin Heidelberg New York)
[10] Bustamante, R.; Ogden, R., Nonlinear magnetoelastostatics: energy functionals and their second variations, Math. Mech. Solids, 18, 7, 760-772, (2012)
[11] Bustamante, R.; Rajagopal, K. R., On a new class of electroelastic bodies. I, Proc. R. Soc. A, 469, November 2012, 20120521, (2013) · Zbl 1371.74095
[12] Bustamante, R.; Dorfmann, A.; Ogden, R. W., Numerical solution of finite geometry boundary-value problems in nonlinear magnetoelasticity, Int. J. Solids Struct., 48, 6, 874-883, (March 2011)
[13] Bustamante, R.; Dorfmann, A.; Ogden, R. W., Numerical solution of finite geometry boundary-value problems in nonlinear magnetoelasticity, Int. J. Solids Struct., 48, 6, 874-883, (2011) · Zbl 1236.74078
[14] Bustamante, R., Transversely isotropic nonlinear magneto-active elastomers, Acta Mech., 210, 3-4, 183-214, (July 2010)
[15] Chen, W.; Sun, L.; Li, X.; Wang, D., Numerical investigation on the magnetostrictive effect of magneto-sensitive elastomers based on a magneto-structural coupling algorithm, Smart Mater. Struct., 22, 10, 105012-1-105012-15, (2013)
[16] Danas, K.; Kankanala, S. V.; Triantafyllidis, N., Experiments and modeling of iron-particle-filled magnetorheological elastomers, J. Mech. Phys. Solids, 60, 120-138, (2012)
[17] Davis, T. A., Algorithm 832: umfpack v4.3 - an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. (TOMS), 30, 196-199, (2004) · Zbl 1072.65037
[18] Destrade, M.; Mac Donald, B.; Murphy, J. G.; Saccomandi, G., At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials, Comput. Mech., 52, 4, 959-969, (April 2013)
[19] Dorfmann, A.; Ogden, R. W., Nonlinear magnetoelastic deformations, Q. J. Mech. Appl. Math., 57, 7, 599-622, (2004) · Zbl 1089.74020
[20] Dorfmann, A.; Ogden, R. W., Some problems in nonlinear magnetoelasticity, J. Appl. Math. Phys. (ZAMP), 56, 4, 718-745, (2005) · Zbl 1071.74020
[21] Dorfmann, L.; Ogden, R. W., Nonlinear theory of electroelastic and magnetoelastic interactions, (2014), Springer New York Heidelberg Dordrecht London · Zbl 1291.78002
[22] Eringen, A. C.; Maugin, G. A., Electrodynamics of Continua, vol. 1, (1990), Springer-Verlag
[23] Federico, S.; Herzog, W., On the anisotropy and inhomogeneity of permeability in articular cartilage, Biomech. Model. Mechanobiol., 7, 5, 367-378, (October 2008)
[24] Galipeau, E.; Ponte Castãneda, P., The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites, Int. J. Solids Struct., 49, 1, 1-17, (2012)
[25] Gasser, T. C.; Ogden, R. W.; Holzapfel, G. A., Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface, 3, 6, 15-35, (February 2006)
[26] Gee, M. W.; Siefert, C. M.; Hu, J. J.; Tuminaro, R. S.; Sala, M. G., ML 5.0 smoothed aggregation User’s guide, (2006), Sandia National Laboratories, Technical Report SAND2006-2649
[27] Ginder, J. M.; Clark, S. M.; Schlotter, W. F.; Nichols, M. E., Magnetostrictive phenomena in magnetorheological elastomers, Int. J. Mod. Phys. B, 16, 17-18, 2412-2418, (2002)
[28] Heroux, M. A., Aztecoo User’s guide, (2007), Sandia National Laboratories, Technical Report SAND2004-3796
[29] Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T.; Salinger, A. G.; Thornquist, H. K.; Tuminaro, R. S.; Willenbring, J. M.; Williams, A.; Stanley, K. S., An overview of the trilinos project, ACM Trans. Math. Softw., 31, 397-423, (2005) · Zbl 1136.65354
[30] Holzapfel, G. A., Nonlinear solid mechanics, (2007), John Wiley & Sons Ltd West Sussex, England
[31] Holzapfel, G. A.; Gasser, T. C., A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications, Comput. Methods Appl. Mech. Eng., 190, 4379-4403, (2001)
[32] Holzapfel, G. A.; Ogden, R. W., Constitutive modelling of arteries, Proc. R. Soc. A, 466, 2118, 1551-1597, (March 2010)
[33] Hughes, T. J., The finite element method: linear static and dynamic finite element analysis, (2000), Dover Publications Inc. New York, USA · Zbl 1191.74002
[34] Jasak, H.; Tuković, Z.̆, Automatic mesh motion for the unstructured finite volume method, Trans. Famena, 30, 2, 1-20, (2006)
[35] Johnson, A. A.; Tezduyar, T. E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. Methods Appl. Mech. Eng., 119, 1-2, 73-94, (1994) · Zbl 0848.76036
[36] Jolly, M. R.; Carlson, J. D.; Muñoz, B. C., A model of the behaviour of magnetorheological materials, Smart Mater. Struct., 5, 5, 607-614, (October 1996)
[37] Kankanala, S. V.; Triantafyllidis, N., On finitely strained magnetorheological elastomers, J. Mech. Phys. Solids, 52, 12, 2869-2908, (December 2004)
[38] Kannan, K. S.; Dasgupta, A., A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures, Smart Mater. Struct., 6, 3, 341, (1997)
[39] Klinkel, S.; Sansour, C.; Wagner, W., An anisotropic fibre-matrix material model at finite elastic-plastic strains, Comput. Mech., 35, 6, 409-417, (December 2004)
[40] Kovetz, A., Electromagnetic theory, (2000), Oxford University Press Oxford and New York · Zbl 1038.78001
[41] Landau, L. D.; Lifshitz, E. M., Electrodynamics of continuous media, (1960), Pergamon Press · Zbl 0122.45002
[42] Livens, G. H., The theory of electricity, (1962), Cambridge University Press
[43] Ly, H. V.; Reitich, F.; Jolly, M. R.; Banks, H. T., Simulations of particle dynamics in magnetorheological fluids, J. Comput. Phys., 155, 1, 160-177, (1999) · Zbl 0953.76063
[44] Marvalova, B., modelling and simulation, chapter modelling of magnetosensitive elastomers, 245-260, (2008), I-Tech Education and Publishing
[45] Maugin, G. A., Continuum mechanics of electromagnetic solids, (1988), North-Holland · Zbl 0652.73002
[46] Maugin, G. A., On modelling electromagnetomechanical interactions in deformable solids, Int. J. Adv. Eng. Sci. Appl. Math., 1, 25-32, (2009)
[47] Maugin, G. A.; Eringen, A. C., On the equations of the electrodynamics of deformable bodies of finite extent, J. de Mec., 16, 1, 101-146, (1977) · Zbl 0356.73079
[48] Nedjar, B., An anisotropic viscoelastic fibre-matrix model at finite strains: continuum formulation and computational aspects, Comput. Methods Appl. Mech. Eng., 196, 9-12, 1745-1756, (February 2007)
[49] Co Ting Keh, Lance Ong-Siong; Zang, Jianfeng; Zhao, Xuanhe, Magneto-rheological foams capable of tunable energy absorption, (2013 Proceedings of IEEE Southeastcon, (April 2013), Ieee), 1-3
[50] Otténio, M.; Destrade, M.; Ogden, R. W., Incremental magnetoelastic deformations, with application to surface instability, J. Elast., 90, 1, 19-42, (2008) · Zbl 1127.74013
[51] Pao, Y. H.; Hutter, K., Electrodynamics for moving elastic solids and viscous fluids, Proc. IEEE, 63, 7, 1011-1021, (1975)
[52] Rudykh, S.; Bertoldi, K., Stability of anisotropic magnetorheological elastomers in finite deformations: a micromechanical approach, J. Mech. Phys. Solids, 61, 4, 949-967, (2013)
[53] Salas, E.; Bustamante, R., Numerical solution of some boundary value problems in nonlinear magneto-elasticity, J. Intell. Mater. Syst. Struct., (2014)
[54] Sansour, C., On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy, Eur. J. Mech. A/Solids, 27, 1, 28-39, (January 2008)
[55] Saxena, P.; Hossain, M.; Steinmann, P., A theory of finite deformation magneto-viscoelasticity, Int. J. Solids Struct., 50, 24, 3886-3897, (2013)
[56] Saxena, P.; Hossain, M.; Steinmann, P., Nonlinear magneto-viscoelasticity of transversally isotropic magneto-active polymers, Proc. R. Soc. A, 470, (2014), 20140082
[57] Semon, Mark D.; Taylor, John R., Thoughts on the magnetic vector potential, Am. J. Phys., 64, 11, 1361-1369, (1996)
[58] Shams, M.; Destrade, M.; Ogden, R. W., Initial stresses in elastic solids: constitutive laws and acoustoelasticity, Wave Motion, 48, 7, 552-567, (2011) · Zbl 1239.74013
[59] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Eng., 51, 177-208, (1985) · Zbl 0554.73036
[60] Simon, T. M.; Reitich, F.; Jolly, M. R.; Ito, K.; Banks, H. T., The effective magnetic properties of magnetorheological fluids, Math. Comput. Model., 33, 1-3, 273-284, (2001), Computation and control {VI} proceedings of the sixth Bozeman conference · Zbl 0977.76095
[61] Spencer, A. J.M., Theory of invariants, (Eringen, A. C., Continuum Physics, vol. I, (1971), Academic New York), 239-353
[62] Steigmann, D. J., On the formulation of balance laws for electromagnetic continua, Math. Mech. Solids, 14, 4, 390-402, (September 2009)
[63] Steinmann, P., Mechanics and electrodynamics of magneto- and electro-elastic materials, chapter computational nonlinear electro-elasticity - getting started, (2011), Springer Vienna · Zbl 1213.74139
[64] Tiersten, H. F., Coupled magnetomechanical equations for magnetically saturated insulators, J. Math. Phys., 5, 9, 1298-1318, (1964) · Zbl 0131.42803
[65] Varga, Z.; Filipcsei, G.; Zrínyi, M., Smart composites with controlled anisotropy, Polymer, 46, 7779-7787, (2005)
[66] Varga, Z.; Filipcsei, G.; Zrinyi, M., Magnetic field sensitive functional elastomers with tuneable elastic modulus, Polymer, 47, 1, 227-233, (January 2006)
[67] Vogel, F.; Bustamante, R.; Steinmann, P., On some mixed variational principles in magneto-elastostatics, Int. J. Non-Linear Mech., 51, 0, 157-169, (2013)
[68] Vogel, F.; Pelteret, J.-P.; Kässmair, S.; Steinmann, P., Magnetic force and torque on particles subject to a magnetic field, Eur. J. Mech. A/Solids, 48, 23-37, (2014) · Zbl 1406.74225
[69] Vu, D. K.; Steinmann, P.; Possart, G., Numerical modelling of non-linear electroelasticity, Int. J. Numer. Methods Eng., 70, 685-704, (2007) · Zbl 1194.74075
[70] Yalcintas, M.; Dai, H., Vibration suppression capabilities of magnetorheological materials based adaptive structures, Smart Mater. Struct., 13, 1, 1-11, (2004)
[71] Yin, Y. M.; Sun, L. Z.; Chen, J. S., Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles, J. Mech. Phys. Solids, 54, 5, 975-1003, (2006), http://www.sciencedirect.com/science/article/pii/S002250960500222X · Zbl 1120.74471
[72] Zheng, Q.-S., Theory of representations for tensor functions - a unified invariant approach to constitutive equations, Appl. Mech. Rev., 47, 11, 545-587, (1994)
[73] Zheng, X.-J.; Wang, X., Analysis of magnetoelastic interaction of rectangular ferromagnetic plates with nonlinear magnetization, Int. J. Solids Struct., 38, 48-49, 8641-8652, (2001) · Zbl 1051.74564
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.