×

zbMATH — the first resource for mathematics

Output dead-beat controllers and function dead-beat observers for linear periodic discrete-time systems. (English) Zbl 0583.93044
Necessary and sufficient conditions are established for the existence of a dynamic linear periodic output dead-beat controller such that both the regulated output and the control input of a linear periodic discrete-time system become and remain zero. Necessary and sufficient conditions for the existence of a linear function dead-beat observer of a linear periodic discrete-time system are also given. Synthesis procedures of both the controller and the observer are provided by the sufficiency proofs.
Reviewer: T.Kaczorek

MSC:
93C55 Discrete-time control/observation systems
93B50 Synthesis problems
93C05 Linear systems in control theory
34C25 Periodic solutions to ordinary differential equations
39A12 Discrete version of topics in analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/TAC.1977.1101644 · Zbl 0375.93025
[2] DOI: 10.1109/TAC.1978.1101910 · Zbl 0388.93031
[3] DOI: 10.1080/00207177808922502 · Zbl 0389.49005
[4] BITTANTI , S. , and BOLZERN , P. , 1983 , Reachability and controllability of periodic discrete-time linear systems . Report 83-7, Laboratorio di Controlli Automatici, Dipartimento di Elcttronica, Politecnico di Milano . · Zbl 0581.93009
[5] DOI: 10.1109/TAC.1984.1103613 · Zbl 0541.93037
[6] DOI: 10.1137/0316003 · Zbl 0383.93014
[7] DOI: 10.1080/00207727808941688 · Zbl 0369.93013
[8] DOI: 10.1016/0022-0396(69)90019-9 · Zbl 0176.06301
[9] DOI: 10.1109/TAC.1975.1101000 · Zbl 0319.93014
[10] DOI: 10.1080/00207177908922714 · Zbl 0407.93031
[11] DOI: 10.1109/TAC.1982.1102818 · Zbl 0469.93057
[12] DOI: 10.1109/TAC.1979.1101983 · Zbl 0399.93033
[13] DOI: 10.1109/TAC.1970.1099477
[14] DOI: 10.1109/TAC.1972.1100006 · Zbl 0263.93011
[15] DOI: 10.1080/00207178408933268 · Zbl 0546.93010
[16] DOI: 10.1016/0005-1098(79)90069-4 · Zbl 0401.93005
[17] DOI: 10.1080/00207178108922978 · Zbl 0464.93056
[18] DOI: 10.1080/00207178308932980 · Zbl 0497.93031
[19] DOI: 10.1137/0313077 · Zbl 0313.93053
[20] DOI: 10.1080/00207177808922493 · Zbl 0392.93016
[21] JAN Y.-S., Proc. Inst. Elect. Engnrs. 65 pp 1728– (1977)
[22] KALMAN , R. E. , 1960 ,proc. 1st IFAC Congress, 481 .
[23] KALMAN , R. E. , FALB , P. L. , and ARBIB , M. A. , 1969 ,Topics in Mathematical System Theory( New York McGraw-Hill ), p. 53 . · Zbl 0231.49001
[24] KIMURA H., I.E.E.E. Trans, autom. Control 22 pp 845– (1977)
[25] DOI: 10.1109/TAC.1981.1102806 · Zbl 0465.93050
[26] DOI: 10.1080/00207178008922850 · Zbl 0443.93044
[27] DOI: 10.1080/00207177808922485 · Zbl 0395.93014
[28] DOI: 10.1109/TAC.1971.1099730
[29] DOI: 10.1109/TAC.1976.1101318 · Zbl 0334.93059
[30] DOI: 10.1109/TAC.1972.1099951 · Zbl 0265.93019
[31] DOI: 10.1109/TAC.1975.1100963 · Zbl 0301.93036
[32] DOI: 10.1080/00207178008961072 · Zbl 0433.93037
[33] DOI: 10.1049/el:19730130
[34] DOI: 10.1080/00207177508922071 · Zbl 0309.93009
[35] DOI: 10.1109/TAC.1982.1102965 · Zbl 0478.93016
[36] SERAJI H., Int. J. Control 21 pp 213– · Zbl 0296.93027
[37] Tou J. T., Modern Control Theory (1964) · Zbl 0196.45603
[38] DOI: 10.1137/0310019 · Zbl 0238.93007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.