×

Comparative study of a cubic autocatalytic reaction via different analysis methods. (English) Zbl 1447.35362

Summary: In this paper we discuss an approximate solutions of the space-time fractional cubic autocatalytic chemical system (STFCACS) equations. The main objective is to find and compare approximate solutions of these equations found using Optimal q-Homotopy Analysis Method (Oq-HAM), Homotopy Analysis Transform Method (HATM), Varitional Iteration Method (VIM) and Adomian Decomposition Method (ADM).

MSC:

35R11 Fractional partial differential equations
35A22 Transform methods (e.g., integral transforms) applied to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] K. Abbaoui; Y. Cherruault, Convergence of adomian’s method applied to differential equations, Comput. Math. Appl., 28, 103-109 (1994) · Zbl 0809.65073 · doi:10.1016/0898-1221(94)00144-8
[2] S. Abbasbandy; E. Shivaniana; K. Vajravelu, Mathematical properties of h-curve in the frame work of the homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation, 16, 4268-4275 (2011) · Zbl 1222.65060 · doi:10.1016/j.cnsns.2011.03.031
[3] S. Abbasbandy, Numerical method for non-linear wave and diffusion equations by the variational iteration method, International Journal for Numerical Methods in Engineering, 73, 1836-1843 (2008) · Zbl 1159.76372 · doi:10.1002/nme.2150
[4] S. Abbasbandy, Homotopy analysis method for heat radiation equations, Int Commun Heat Mass Transf, 34, 380-387 (2007)
[5] S. Abbasbandy, Soliton solutions for the 5th-order kdv equation with the homotopy analysis method, Nonlinear Dyn, 51, 83-87 (2008) · Zbl 1170.76317 · doi:10.1007/s11071-006-9193-y
[6] S. Abbasbandy, The application of the homotopy analysis method to nonlinear equations arising in heat transfer, Phys Lett A, 360, 109-113 (2006) · Zbl 1236.80010 · doi:10.1016/j.physleta.2006.07.065
[7] S. M. Abo-Dahab, M. S. Mohamed and T. A. Nofal, A One Step Optimal Homotopy Analysis Method for propagation of harmonic waves in nonlinear generalized magneto-thermoelasticity with two relaxation times under influence of rotation, Abstract and Applied Analysis, 2013 (2013), Art. ID 614874, 14 pp. · Zbl 1470.35349
[8] G. Adomian, Solving the mathematical models of neurosciences and medicine, Mathematics and Computers in Simulation, 40, 107-114 (1995) · doi:10.1016/0378-4754(95)00021-8
[9] G. Adomian, The kadomtsev-petviashvili equation, Applied Mathematics and Computation, 76, 95-97 (1996) · Zbl 0846.65074 · doi:10.1016/0096-3003(95)00186-7
[10] A. S. Arife; S. K. Vanani; F. Soleymani, The laplace homotopy analysis method for solving a general fractional diffusion equation arising in nano- hydrodynamics, J Comput Theor Nanosci, 10, 33-36 (2013) · doi:10.1166/jctn.2013.2653
[11] M. Caputo, Linear models of dissipation whose q is almost frequency independent, Geophysical Journal, 13, 529-539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[12] Y. Cherruault, Convergence of adomian’s method, Kybernetes, 18, 31-38 (1989) · Zbl 0697.65051 · doi:10.1108/eb005812
[13] Y. Cherruault; G. Adomians, Decomposition methods: A new proof of convergence, Math. Comput. Modelling, 18, 103-106 (1993) · Zbl 0805.65057 · doi:10.1016/0895-7177(93)90233-O
[14] V. F. M. Delgado, J. F. Gómez-Aguilar, H. Y. Martez and D. Baleanu, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equ. , 2016 (2016), Paper No. 164, 17 pp.
[15] M. A. El-Tawil; S. N. Huseen, On convergence of the q-homotopy analysis method, Int. J. of Contemp. Math. Scies., 8, 481-497 (2013) · doi:10.12988/ijcms.2013.13048
[16] M. A. Gondal; A. S. Arife; M. Khan; I. Hussain, An efficient numerical method for solving linear and nonlinear partial differential equations by combining homotopy analysis and transform method, World Applied Sciences Journal, 14, 1786-1791 (2011)
[17] C. Gong, W. Bao, G. Tang, Y. Jiang and J. Liu, A domain decomposition method for time fractional reaction-diffusion equation, The Scientific World Journal, 2014 (2014), Article ID 681707, 5 pages.
[18] V. G. Gupta; P. Kumar, Approximate solutions of fractional linear and nonlinear differential equations using laplace homotopy analysis method, Int. J. Nonlinear Sci., 19, 113-120 (2015) · Zbl 1394.34034
[19] T. Hayat; M. Khan; S. Asghar, Homotopy analysis of mhd flows of an oldroyd 8-constant fluid, Appl. Math. Comput., 155, 417-425 (2004) · Zbl 1126.76388 · doi:10.1016/S0096-3003(03)00787-2
[20] T. Hayat; S. B. Khan; M. Sajid; S. Asghar, Rotating flow of a third grade fluid in a porous space with hall current, Nonlinear Dyn, 49, 83-91 (2007) · Zbl 1181.76149 · doi:10.1007/s11071-006-9105-1
[21] J. H. He, Variational iteration method- a kind of non-linear analytical technique: Some examples, International Journal of Non-Linear Mechanics, 34, 699-708 (1999) · Zbl 1342.34005 · doi:10.1016/S0020-7462(98)00048-1
[22] J. H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114, 115-123 (2000) · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[23] J. H. He, Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons & Fractals, 19, 847-851 (2004) · Zbl 1135.35303 · doi:10.1016/S0960-0779(03)00265-0
[24] J. H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Modern Phys. B, 20, 1141-1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[25] O. S. Iyiola, On the solutions of non-linear time-fractional gas dynamic equations: An analytical approach, International Journal of Pure and Applied Mathematics, 98, 491-502 (2015) · doi:10.12732/ijpam.v98i4.8
[26] H. Jafari; V. Daftardar-Gejji, Solving a system of nonlinear fractional differential equations using adomian decomposition, Journal of Computational and Applied Mathematics, 196, 644-651 (2006) · Zbl 1099.65137 · doi:10.1016/j.cam.2005.10.017
[27] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier, Amsterdam, 2006. · Zbl 1092.45003
[28] A. C. King, J. Billingham and S. R. Otto. Differential Equations: Linear, Nonlinear, Ordinary, Partial, Cambridge University Press, 2003. · Zbl 1034.34001
[29] S. Kumar; J. Singh; D. Kumar; S. Kapoor, New homotopy analysis transform algorithm to solve volterra integral equation, Ain Shams Engineering Journal, 5, 243-246 (2014) · doi:10.1016/j.asej.2013.07.004
[30] S. Kumar; D. Kumar, Fractional modelling for bbm-burger equation by using new homotopy analysis transform method, Journal of the Association of Arab Universities for Basic and Applied Sciences, 16, 16-20 (2014) · doi:10.1016/j.jaubas.2013.10.002
[31] D. Kumar,J. Singh, S. Kumar and Sushila, Numerical computation of klein-gordon equations arising in quantum field theory by using homotopy analysis transform method, Alexandria Engineering Journal, 53 (2014), 469-474.
[32] D. Kumar, J. Singh and Sushila, Application of homotopy analysis transform method to fractional biological population model, Romanian Reports in Physics, 65 (2013), 63-75.
[33] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992.
[34] S. J. Liao, Beyond perturbation: introduction to the homotopy analysis method, Boca Raton: Chapman and Hall/CRC Press, 2003.
[35] S. J. Liao, A kind of approximate solution technique which does not depend upon small parameters- Ⅱ: an application in fluid mechanics, Int J Non- Linear Mech, 32, 815-822 (1997) · Zbl 1031.76542 · doi:10.1016/S0020-7462(96)00101-1
[36] S.-J. Liao, An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun Nonlinear Sci Numer Simulat, 15, 2003-2016 (2010) · Zbl 1222.65088 · doi:10.1016/j.cnsns.2009.09.002
[37] S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl Math Comput, 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[38] H. M. Liu, Generalized variational principles for ion acoustic plasma waves by He’s semi-inverse method, Chaos, Solitons Fractals, 23, 573-576 (2005) · Zbl 1135.76597
[39] M. Madani; M. Fathizadeh; Y. Khan; A. Yildirim, On the coupling of the homotopy perturbation method and laplace transformation, Math. and Comput. Model., 53, 1937-1945 (2011) · Zbl 1219.65121 · doi:10.1016/j.mcm.2011.01.023
[40] T. Mavoungou; Y. Cherruault, Convergence of adomian’s method and applications to non-linear partial differential equation, Kybernetes, 21, 13-25 (1992) · Zbl 0801.35007 · doi:10.1108/eb005942
[41] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley and Sons, New York, 1993. · Zbl 0789.26002
[42] M. S. Mohamed; K. A. Gepreel; M. R. Alharthi; R. A. Alotabi, Homotopy analysis transform method for integro-differential equations, General Mathematics Notes, 32, 32-48 (2016)
[43] M. S. Mohamed; F. Al-Malki; M. Al-humyani, Homotopy analysis transform method for time-space fractional gas dynamics equation, Gen. Math. Notes, 24, 1-16 (2014)
[44] Z. Odibat, A new modification of the homotopy perturbation method for linear and nonlinear operators, Appl. Math. Comput., 189, 746-753 (2007) · Zbl 1122.65092 · doi:10.1016/j.amc.2006.11.188
[45] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. · Zbl 0924.34008
[46] A. Répaci, Nonlinear dynamical systems: On the accuracy of adomian’s decomposition method, Appl. Mth. Lett., 3, 35-39 (1990) · Zbl 0719.93041 · doi:10.1016/0893-9659(90)90042-A
[47] K. M. Saad, Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional Cubic Isothermal Auto-catalytic Chemical System, Eur. Phys. J. Plus133 (2018), p49.
[48] K. M. Saad; D. Baleanu; A. Atangana, New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger’s equations, A. Comp. Appl. Math., 1-14 (2018) · Zbl 1432.35229 · doi:10.1007/s40314-018-0627-1
[49] K. M. Saad, A. Atangana and D. Baleanu, New Fractional derivatives with non-singular kernel applied to the Burgers equation, Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (2018), 063109, 6 pp. · Zbl 1394.35565
[50] K. M. Saad; J. F. Gómez-Aguilar, Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel, Physica A: Statistical Mechanics and its Applications, 476, 1-14 (2017) · doi:10.1016/j.physa.2017.02.016
[51] K. M. Saad, E. H. AL-Shareef, M. S. Mohamed and X. J. Yang, Optimal q-homotopy analysis method for time-space fractional gas dynamics equation, The European Physical Journal Plus, 132 (2017), 23.
[52] K. M. Saad; A. A. AL-Shomrani, An application of homotopy analysis transform method for Riccati differential equation of fractional order, Journal of Fractional Calculus and Applications, 7, 61-72 (2016) · Zbl 1488.34094
[53] M. Shaban, E. Shivanian and S. Abbasbandy, Analyzing magneto-hydrodynamic squeezing flow between two parallel disks with suction or injection by a new hybrid method based on the tau method and the homotopy analysis method, The European Physical Journal Plus, 128 (2013), 133.
[54] E. Shivanian; H. H. Alsulami; M. S. Alhuthali; S. Abbasbandy, Predictor homotopy analysis method (PHAM) for nano boundary layer flows with nonlinear Navier boundary condition: Existence of four solutions, Filomat, 28, 1687-1697 (2014) · Zbl 1462.35253 · doi:10.2298/FIL1408687S
[55] E. Shivanian; S. Abbasbandy, Predictor homotopy analysis method: Two points second order boundary value problems, Nonlinear Analysis: Real World Applications, 15, 89-99 (2014) · Zbl 1294.65081 · doi:10.1016/j.nonrwa.2013.06.003
[56] J. Singh, D. Kumar and Sushila, Homotopy perturbation algorithm using laplace transform for gas dynamics equation, Journal of the Applied Mathematics, Statistics and Informatics, 8 (2012), 55-61. · Zbl 1277.65085
[57] J. Singh; D. Kumar; S. Rathore, Application of homotopy perturbation transform method for solving linear and nonlinear klein-gordon equations, Journal of Information and Computing Science, 7, 131-139 (2012)
[58] M. Singh; M. Naseem; A. Kumar; S. Kumar, Homotopy analysis transform algorithm to solve time-fractional foam drainage equation, Nonlinear Engineering, 5, 161-166 (2016) · doi:10.1515/nleng-2016-0014
[59] L. A. Soltania; E. Shivanianb; R. Ezzatia, Convection-radiation heat transfer in solar heat exchangers filled with a porous medium: Exact and shooting homotopy analysis solution, Applied Thermal Engineering, 103, 537-542 (2016)
[60] Q. Sun, Solving the klein-gordon equation by means of the homotopy analysis method, Appl. Math. and Comput., 169, 355-365 (2005) · Zbl 1078.35105 · doi:10.1016/j.amc.2004.09.056
[61] J. Vahidi, The combined Laplace-homotopy analysis method for partial differential equations, J. Math. Computer Sci., 16, 88-102 (2016) · doi:10.22436/jmcs.016.01.10
[62] H. Vosoughi; E. Shivanian; S. Abbasbandy, Unique and multiple pham series solutions of a class of nonlinear reactive transport model, Numerical Algorithms, 61, 515-524 (2012) · Zbl 1256.65077 · doi:10.1007/s11075-012-9548-z
[63] H. Vosughi; E. Shivanian; S. Abbasbandy, A new analytical technique to solve volterra’s integral equations, Mathematical methods in the applied sciences, 34, 1243-1253 (2011) · Zbl 1239.65084 · doi:10.1002/mma.1436
[64] Y. Wu; C. Wang; S. J. Liao, Solving the one-loop soliton solution of the vakhnenko equation by means of the homotopy analysis method, Chaos, Solitons and Fractals, 23, 1733-1740 (2005) · Zbl 1069.35060 · doi:10.1016/S0960-0779(04)00437-0
[65] L. Xu; J. H. He; Y. Liu, Electrospun nanoporous spheres with chinese drug, Int. J. Nonlinear Sci. Numer. Simul., 8, 199-202 (2007) · Zbl 06942262 · doi:10.1515/IJNSNS.2007.8.2.199
[66] K. Yabushita; M. Yamashita; K. Tsuboi, An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J Phys A, 40, 8403-8416 (2007) · Zbl 1331.70041 · doi:10.1088/1751-8113/40/29/015
[67] M. Zurigat, Solving fractional oscillators using laplace homotopy analysis method, Annals of the University of Craiova, Mathematics and Computer Science Series, 38, 1-11 (2011) · Zbl 1265.34039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.