×

Computing eigenvalues and eigenfunctions of the Laplacian for convex polygons. (English) Zbl 1380.65351

Summary: Recently a new transform method, called the Unified Transform or the Fokas method, for solving boundary value problems (BVPs) for linear and integrable nonlinear partial differential equations (PDEs) has received a lot of attention. For linear elliptic PDEs, this method yields two equations, known as the global relations, coupling the Dirichlet and Neumann boundary values. These equations can be used in a collocation method to determine the Dirichlet to Neumann map. This involves expanding the unknown functions in terms of a suitable basis, and choosing a set of collocation points at which to evaluate the global relations. Here, using these methods for the Helmholtz and modified Helmholtz equations and following the earlier results, we determine eigenvalues of the Laplacian in a convex polygon. Eigenvalues are characterised by the points where the generalised Dirichlet to Neumann map becomes singular. We find that the method yields spectral convergence for eigenfunctions smooth on the boundary and for non-smooth boundary values, the rate of convergence is determined by the rate of convergence of expansions in the chosen Legendre basis. Extensions to the case of oblique derivative boundary conditions and constant coefficient elliptic PDEs are also discussed and demonstrated.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

Software:

BEMLIB
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ashton, A., On the rigorous foundations of the Fokas method for linear elliptic partial differential equations, Proc. R. Soc. A, vol. 468, 1325-1331 (2012), The Royal Society · Zbl 1364.35087
[2] Ashton, A., The spectral Dirichlet-Neumann map for Laplace’s equation in a convex polygon, SIAM J. Math. Anal., 45, 6, 3575-3591 (2013) · Zbl 1296.35046
[3] Ashton, A., Elliptic PDEs with constant coefficients on convex polyhedra via the unified method, J. Math. Anal. Appl., 425, 1, 160-177 (2015) · Zbl 1312.35061
[4] Ashton, A., Laplace’s Equation on Convex Polyhedra via the Unified Method, Proc. R. Soc. A, vol. 471 (2015), The Royal Society · Zbl 1371.35026
[5] Ashton, A. C., The fundamental k-form and global relations, SIGMA, 4, 033, 15 (2008) · Zbl 1230.30025
[6] Ashton, A.; Crooks, K., Numerical analysis of Fokas’ unified method for linear elliptic PDEs, Appl. Numer. Math., 104, 120-132 (2016) · Zbl 1336.65183
[7] Babuška, I.; Guo, B., Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions, Numer. Math., 85, 2, 219-255 (2000) · Zbl 0970.65117
[8] Babuška, I.; Osborn, J., Eigenvalue problems, Handb. Numer. Anal., 2, 641-787 (1991) · Zbl 0875.65087
[9] Bergh, J.; Lofstrom, J., Interpolation Spaces: An Introduction, vol. 223 (2012), Springer Science & Business Media
[10] Boffi, D., Finite element approximation of eigenvalue problems, Acta Numer., 19, 1-120 (2010) · Zbl 1242.65110
[11] Canuto, C.; Quarteroni, A., Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comput., 38, 157, 67-86 (1982) · Zbl 0567.41008
[12] Colton, D.; Kress, R., Integral Equation Methods in Scattering Theory (2013), SIAM · Zbl 1291.35003
[13] Costabel, M.; Dauge, M., Construction of corner singularities for Agmon-Douglis-Nirenberg elliptic systems, Math. Nachr., 162, 1, 209-237 (1993) · Zbl 0802.35032
[14] Courant, R.; Hilbert, D., Methods of Mathematical Physics, vol. 2: Differential Equations (2008), John Wiley & Sons
[15] Davis, C.-I. R.; Fornberg, B., A spectrally accurate numerical implementation of the Fokas transform method for Helmholtz-type PDEs, Complex Var. Elliptic Equ., 59, 4, 564-577 (2014) · Zbl 1291.65083
[16] Fokas, A. S., A unified transform method for solving linear and certain nonlinear PDEs, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., vol. 453, 1411-1443 (1997), The Royal Society · Zbl 0876.35102
[17] Fokas, A., On the integrability of linear and nonlinear partial differential equations, J. Math. Phys., 41, 6, 4188-4237 (2000) · Zbl 0994.37036
[18] Fokas, A. S., Two-dimensional linear partial differential equations in a convex polygon, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., vol. 457, 371-393 (2001), The Royal Society · Zbl 0988.35129
[19] Fokas, A. S., A Unified Approach to Boundary Value Problems (2008), SIAM · Zbl 1181.35002
[20] Fokas, A.; Flyer, N.; Smitheman, S.; Spence, E., A semi-analytical numerical method for solving evolution and elliptic partial differential equations, J. Comput. Appl. Math., 227, 1, 59-74 (2009) · Zbl 1170.65079
[21] Fokas, A.; Kalimeris, K., Eigenvalues for the Laplace operator in the interior of an equilateral triangle, Comput. Methods Funct. Theory, 14, 1, 1-33 (2014) · Zbl 1323.35108
[22] Fornberg, B.; Flyer, N., A Numerical Implementation of Fokas Boundary Integral Approach: Laplace’s Equation on a Polygonal Domain, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., vol. 467, 2983-3003 (2011), The Royal Society · Zbl 1226.65099
[23] Fulton, S.; Fokas, A.; Xenophontos, C., An analytical method for linear elliptic PDEs and its numerical implementation, J. Comput. Appl. Math., 167, 2, 465-483 (2004) · Zbl 1050.65116
[24] Gordon, C.; Webb, D.; Wolpert, S., Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., 110, 1, 1-22 (1992) · Zbl 0778.58068
[25] Grisvard, P., Singularities in Boundary Value Problems, vol. 22 (1992), Springer · Zbl 0766.35001
[26] Grisvard, P., Elliptic Problems in Nonsmooth Domains (2011), SIAM · Zbl 1231.35002
[27] Hashemzadeh, P.; Fokas, A.; Smitheman, S., A Numerical Technique for Linear Elliptic Partial Differential Equations in Polygonal Domains, Proc. R. Soc. A, vol. 471 (2015), The Royal Society · Zbl 1372.65315
[28] Hitzazis, I.; Fokas, A., Linear elliptic PDEs in a cylindrical domain with a polygonal cross-section, Stud. Appl. Math., 139, 288-321 (2017) · Zbl 1377.35065
[29] Kac, M., Can one hear the shape of a drum?, Am. Math. Mon., 73, 4, 1-23 (1966) · Zbl 0139.05603
[30] Kolm, P.; Rokhlin, V., Numerical quadratures for singular and hypersingular integrals, Comput. Math. Appl., 41, 3-4, 327-352 (2001) · Zbl 0985.65016
[31] Kuttler, J.; Sigillito, V., Eigenvalues of the Laplacian in two dimensions, SIAM Rev., 26, 2, 163-193 (1984) · Zbl 0574.65116
[32] Lehman, R. S., Developments at an analytic corner of solutions of elliptic partial differential equations, J. Math. Mech., 8, 5, 727-760 (1959) · Zbl 0094.29702
[33] McLean, W. C.H., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge University Press · Zbl 0948.35001
[34] Nakamura, K.; Harayama, T., Quantum Chaos and Quantum Dots, vol. 3 (2004), Oxford University Press on Demand
[35] Pozrikidis, C., A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (2002), CRC Press · Zbl 1019.65097
[36] Saito, N., Data analysis and representation on a general domain using eigenfunctions of Laplacian, Appl. Comput. Harmon. Anal., 25, 1, 68-97 (2008) · Zbl 1148.94005
[37] Saridakis, Y. G.; Sifalakis, A.; Papadopoulou, E. P., Efficient numerical solution of the generalized Dirichlet-Neumann map for linear elliptic PDEs in regular polygon domains, J. Comput. Appl. Math., 236, 9, 2515-2528 (2012) · Zbl 1244.65191
[38] Sifalakis, A.; Fokas, A.; Fulton, S.; Saridakis, Y., The generalized Dirichlet-Neumann map for linear elliptic PDEs and its numerical implementation, J. Comput. Appl. Math., 219, 1, 9-34 (2008) · Zbl 1152.65113
[39] Sifalakis, A.; Fulton, S.; Papadopoulou, E.; Saridakis, Y., Direct and iterative solution of the generalized Dirichlet-Neumann map for elliptic PDEs on square domains, J. Comput. Appl. Math., 227, 1, 171-184 (2009) · Zbl 1183.65154
[40] Sifalakis, A.; Papadopoulou, E.; Saridakis, Y., Numerical study of iterative methods for the solution of the Dirichlet-Neumann map for linear elliptic PDEs on regular polygon domains, Int. J. Appl. Math. Comput. Sci., 4, 173-178 (2007)
[41] Smith, R., Direct Gauss quadrature formulae for logarithmic singularities on isoparametric elements, Eng. Anal. Bound. Elem., 24, 2, 161-167 (2000) · Zbl 0951.65021
[42] Smitheman, S.; Spence, E. A.; Fokas, A., A spectral collocation method for the Laplace and modified Helmholtz equations in a convex polygon, IMA J. Numer. Anal., 30, 4, 1184-1205 (2010) · Zbl 1202.65161
[43] Spence, E. A., Boundary value problems for linear elliptic PDEs (2011), University of Cambridge, Ph.D. thesis
[44] Trefethen, L. N.; Betcke, T., Computed eigenmodes of planar regions, Contemp. Math., 412, 297-314 (2006) · Zbl 1107.65101
[45] Unger, G., Analysis of Boundary Element Methods for Laplacian Eigenvalue Problems (2009), Verlag der Techn. Univ.: Verlag der Techn. Univ. Graz
[46] Vescovo, R., Inversion of block-circulant matrices and circular array approach, IEEE Trans. Antennas Propag., 45, 10, 1565-1567 (1997) · Zbl 0949.15006
[47] Wang, H.; Xiang, S., On the convergence rates of Legendre approximation, Math. Comput., 81, 278, 861-877 (2012) · Zbl 1242.41016
[48] Wigley, N. M., Mixed boundary value problems in plane domains with corners, Math. Z., 115, 1, 33-52 (1970) · Zbl 0186.17202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.