×

Analytical solution of fractionally damped beam by Adomian decomposition method. (English) Zbl 1231.26009

Summary: The analytical solution of a viscoelastic continuous beam whose damping characteristics are described in terms of a fractional derivative of arbitrary order was derived by means of the Adomian decomposition method. The solution contains arbitrary initial conditions and zero input. For specific analysis, the initial conditions were assumed homogeneous, and the input force was treated as a special process with a particular beam. Two simple cases, step and impulse function responses, were considered respectively. Subsequently, some figures were plotted to show the displacement of the beam under different sets of parameters including different orders of the fractional derivatives.

MSC:

26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Deng R, Davies P, Bajaj A K. A case study on the use of fractional derivatives: the low-frequency viscoelastic uni-directional behavior of polyurethane foam[J]. Nonlinear Dynamics, 2004, 38(1/4):247–265. · Zbl 1142.74313 · doi:10.1007/s11071-004-3759-3
[2] Rossikhin Y A, Shitikova M V. Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders[J]. The Shock and Virabraion Digest, 2004, 36(1):3–26. · doi:10.1177/0583102404039131
[3] Agrawal O P. Analytical solution for stochastic response of a fractionally damped beam[J]. ASME J Vibr Acoust, 2004, 126(4):561–566. · doi:10.1115/1.1805003
[4] Oldham K B, Spanier J. The fractional calculus[M]. New York: Academic, 1974. · Zbl 0292.26011
[5] Podlubny I. Fractional differential equations[M]. San Diego: Academic Press, 1999. · Zbl 0924.34008
[6] Suarez L E, Shokooh A. Response of systems with damping materials modeled using fractional calculus[J]. ASME J Appl Mech Rev, 1995, 48(11):118–127.
[7] Samko G, Kilbas A A, Marichev O I. Fractional integrals and derivatives: theory and applications[M]. Yverdon: Gordon & Breach, 1993. · Zbl 0818.26003
[8] Kemple S, Beyer H. Global and causal solutions of fractional differential equations[M]. In: Transform Methods and Special Functions: Varna96, Proceedings of 2nd International Workshop, Singapore: SCTP, 1997, 210–216.
[9] Kilbas A A, Pierantozzi T, Trujillo J J, Vázquez L. On the solution of fractional evolution equations[J]. J Phys A: Math Gen, 2004, 37(9):3271–3283. · Zbl 1059.35030 · doi:10.1088/0305-4470/37/9/015
[10] Luchko Y, Srivastava H M. The exact solution of certain differential equations of fractional order by using operational calculus[J]. Comput Math Appl, 1995, 29(8):73–85. · Zbl 0824.44011 · doi:10.1016/0898-1221(95)00031-S
[11] Adomian G. A new approach to nonlinear partial differential equations[J]. J Math Anal Appl, 1984, 102(2):420–434. · Zbl 0554.60065 · doi:10.1016/0022-247X(84)90182-3
[12] Adomian G. Solving frontier problems of physics: the decomposition method[M]. Boston: Kluwer Academic Publishers, 1994. · Zbl 0802.65122
[13] Wazwaz A M. Exact solutions for variable coefficients fourth-order parabolic partial differential equations in higher-dimensional spaces[J]. Appl Math Comput, 2002, 130(2/3):415–424. · Zbl 1024.35037 · doi:10.1016/S0096-3003(01)00109-6
[14] Momani S, Alkhaled K. Numerical solutions for systems of fractional differential equations by the decomposition method[J]. Appl Math Comput, 2005, 162(3):1351–1365. · Zbl 1063.65055 · doi:10.1016/j.amc.2004.03.014
[15] Vadasz P, Olek S. Convergence and accuracy of Adomian’s decomposition method for the solution of Lorenz equations[J]. Int J Heat Mass Transfer, 2000, 43(10):1715–1734. · Zbl 1015.76075 · doi:10.1016/S0017-9310(99)00260-4
[16] Chen W H, Lu Z Y. An algorithm for Adomian decompostion method[J]. Appl Math Comput, 2004, 159(1):221–235. · Zbl 1062.65059 · doi:10.1016/j.amc.2003.10.037
[17] Chen Q S, Suki B, An K N. Dynamic mechanical properties of agarose gels modeled by a fractional derivative model[J]. ASME J Biomech Eng, 2004, 126(5):666–671. · doi:10.1115/1.1797991
[18] Saha Ray S, Poddar B P, Bera R K. Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method[J]. ASME J Appl Mech, 2005, 72(2):290–295. · Zbl 1111.74611 · doi:10.1115/1.1943437
[19] Saha Ray S, Bera R K. Analytical solution of the Bagley Torvik equation by Adomian decomposition method[J]. Appl Math Comput, 2005, 168(1):398–410. · Zbl 1109.65072 · doi:10.1016/j.amc.2004.09.006
[20] Daftardar-Gejji V, Jafari H. Adomian decomposition: a tool for solving a system of fractional differential equations[J]. J Math Anal Appl, 2005, 301(2):508–518. · Zbl 1061.34003 · doi:10.1016/j.jmaa.2004.07.039
[21] Shawagfeh N T. The decomposition method for fractional differential equations[J]. J Frac Calc, 1999, 16:27–33. · Zbl 0956.34004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.