×

Modeling the transmission of dengue fever with limited medical resources and self-protection. (English) Zbl 1395.35107

Summary: To capture the impacts of limited medical resources and self-protection on the transmission of dengue fever, we formulate an SIS v.s. SI dengue model with the nonlinear recovery rate and contact transmission rate. The spatial heterogeneity of environment is also taken into consideration. With the aid of the relevant eigenvalue problem, we explore some properties of the basic reproduction number, and show that it still plays its “traditional” role in determining the stability of equilibria, that is, the extinction and persistence of dengue fever. Moreover, we consider a special diffusive pattern in which there is only human diffusion, but no mosquitoes diffusion, then present the explicit expression of the basic reproduction number and exhibit the corresponding transmission dynamics. This paper ends up with some numerical simulations and epidemiological explanations, which confirm our analytical findings.

MSC:

35K20 Initial-boundary value problems for second-order parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Abdelrazec; J. Belair; C. H. Shan; H. P. Zhu, Modeling the spread and control of dengue with limited public health resources, Math. Biosci., 271, 136-145 (2016) · Zbl 1364.92036 · doi:10.1016/j.mbs.2015.11.004
[2] I. Ahn; S. Baek; Z. G. Lin, The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Modelling, 40, 7082-7101 (2016) · doi:10.1016/j.apm.2016.02.038
[3] L. J. S. Allen; B. M. Bolker; Y. Lou; A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21, 1-20 (2008) · Zbl 1146.92028 · doi:10.3934/dcds.2008.21.1
[4] P. Álvarez-Caudevilla; Y. H. Du; R. Peng, Qualitative analysis of a cooperative reaction-diffusion system in a spatiotemporally degenerate environment, SIAM J. Math. Anal., 46, 499-531 (2014) · Zbl 1293.35138 · doi:10.1137/13091628X
[5] S. Bhatt; P. W. Gething; O. J. Brady, The global distribution and burden of dengue, Nature, 496, 504-507 (2013) · doi:10.1038/nature12060
[6] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd, 2003. · Zbl 1059.92051
[7] R. H. Cui; Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261, 3305-3343 (2016) · Zbl 1342.92231 · doi:10.1016/j.jde.2016.05.025
[8] Dengue Fever, Available from: https://en.wikipedia.org/wiki/Dengue_fever.
[9] Dengue Fever: The Fastest-spreading Vector-borne Infectious Disease Worldwide, Available from: http://www.jianke.com/crbpd/1681049.html.
[10] L. Esteva; C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150, 131-151 (1998) · Zbl 0930.92020 · doi:10.1016/S0025-5564(98)10003-2
[11] X. M. Feng; S. G. Ruan; Z. D. Teng; K. Wang, Stability and backward bifurcation in a malaria transmission model with applications to the control of malaria in China, Math. Biosci., 266, 52-64 (2015) · Zbl 1356.92081 · doi:10.1016/j.mbs.2015.05.005
[12] Z. L. Feng; J. X. Velasco-Hernández, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol., 35, 523-544 (1997) · Zbl 0878.92025 · doi:10.1007/s002850050064
[13] D. Fischer; S. Halstead, Observations related to pathogenesis of dengue hemorrhagic fever. V. Examination of age specific sequential infection rates using a mathemactical model, J. Biol. Med., 42, 329-349 (1970)
[14] D. Z. Gao, Y. J. Lou and D. H. He, et al., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling ananlysis Scientific Reports 6, Article number: 28070 (2016), 28070
[15] S. M. Garba; A. B. Gumel; M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215, 11-25 (2008) · Zbl 1156.92036 · doi:10.1016/j.mbs.2008.05.002
[16] J. Ge; K. I. Kim; Z. G. Lin; H. P. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259, 5486-5509 (2015) · Zbl 1341.35171 · doi:10.1016/j.jde.2015.06.035
[17] J. Ge; Z. G. Lin; H. P. Zhu, Environmental risks in a diffusive SIS model incorporating use efficiency of the medical resource, Discrete Contin. Dyn. Syst. Ser. B, 21, 1469-1481 (2016) · Zbl 1346.35238 · doi:10.3934/dcdsb.2016007
[18] H. Heesterbeek and R. M. Anderson, et al. Modeling infectious disease dynamics in the complex landscape of global health Science, 347 (2015), aaa4339.
[19] T. W. Hwang; F. B. Wang, Dynamics of a Dengue fever transmission model with crowding effect in human population and spatial variation, Discrete Contin. Dyn. Syst. Ser. B, 18, 147-161 (2013) · Zbl 1284.35225
[20] Z. G. Lin; M. Pedersen, Stability in a diffusive food-chain model with Michaelis-Menten functional response, Nonlinear Anal., 57, 421-433 (2004) · Zbl 1053.35026 · doi:10.1016/j.na.2004.02.022
[21] Y. J. Lou; X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62, 543-568 (2011) · Zbl 1232.92057 · doi:10.1007/s00285-010-0346-8
[22] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. · Zbl 0777.35001
[23] M. Safan; A. Ghazi, Demographic impact and controllability of malaria in an SIS model with proportional fatality, Bull. Malays. Math. Sci. Soc., 39, 65-86 (2016) · Zbl 1332.92075 · doi:10.1007/s40840-015-0181-6
[24] C. H. Shan; H. P. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds, J. Differential Equations, 257, 1662-1688 (2014) · Zbl 1300.34113 · doi:10.1016/j.jde.2014.05.030
[25] A. K. Tarboush; Z. G. Lin; M. Y. Zhang, Spreading and vanishing in a West Nile virus model with expanding fronts, Sci. China Math., 60, 841-860 (2017) · Zbl 1365.35186 · doi:10.1007/s11425-016-0367-4
[26] J. J. Tewa; J. L. Dimi; S. Bowong, Lyapunov functions for a dengue disease transmission model, Chaos Solitons Fractals, 39, 936-941 (2009) · Zbl 1197.34099 · doi:10.1016/j.chaos.2007.01.069
[27] P. van den Driessche; J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[28] W. D. Wang; X. Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71, 147-168 (2011) · Zbl 1228.35118 · doi:10.1137/090775890
[29] Z. Wang; X. Q. Zhao, Global dynamics of a time-delayed dengue transmission model, Can. Appl. Math. Q., 20, 89-113 (2012)
[30] WHO, Fact Sheet 117: Dengue and dengue hemorrhagic fever, (2009).
[31] N. Z. Xu and H. M. Yang, Mosquitoes and prevent(Chinese), Disease Monitor and Control, 4 (2010), 635.
[32] H. M. Yang; M. L. G. Macoris; K. C. Galvani; M. T. Andrighetti, Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings, Biosystems, 103, 360-371 (2011) · doi:10.1016/j.biosystems.2010.11.002
[33] X. H. Zhang; S. Y. Tang; R. A. Cheke, Models to assess how best to replace dengue virus vectors with \(Wolbachia\)-infected mosquito populations, Math. Biosci., 269, 164-177 (2015) · Zbl 1335.92106 · doi:10.1016/j.mbs.2015.09.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.