×

zbMATH — the first resource for mathematics

Arithmetical complexity of fuzzy predicate logics – a survey. II. (English) Zbl 1182.03050
Summary: Results on arithmetical complexity of important sets of formulas of several fuzzy predicate logics (tautologies, satisfiable formulas, \(\dots \)) are surveyed and some new results are proven.
For Part I see Soft Comput. 9, No. 12, 935–941 (2005; Zbl 1093.03012).

MSC:
03B52 Fuzzy logic; logic of vagueness
03D55 Hierarchies of computability and definability
PDF BibTeX Cite
Full Text: DOI
References:
[1] Baaz, M.; Leitsch, A.; Zach, R., Incompleteness of a first-order Gödel logic and some temporal logics of programs, (), 1-15
[2] M. Baaz, A. Ciabattoni, C.G. Fermüller, Herbrand theorem for prenex Gödel logic, in: Proc. LPAR 2001
[3] M. Baaz, N. Preining, R. Zach, Characterization of the axiomatizable prenex fragments of Gödel logic, in: Proc. 33 ISMVL 2003 Tokyo, pp. 175-180
[4] M. Baaz, A. Ciabattoni, C.G. Fermüller, Monadic fragments of Gödel logics: Decidability and undecidability results, in: Proceedings of Logic for Programming and Automated Reasoning, LPAR’2007, Lect. Notes in AI (in press) · Zbl 1138.03025
[5] M. Baaz, A. Ciabattoni, N. Preining, SAT for monadic Gödel logics — a borderline between decidable and undecidable, in: Proc. WOLLIC 2005, pp. 113-123 · Zbl 1246.03046
[6] Baaz, M.; Preining, N.; Zach, R., First-oder Gödel logic, Annals pure appl. log., 47, 23-47, (2007) · Zbl 1146.03010
[7] P. Cintula, P. Hájek, Triangular norm based predicate fuzzy logics, in: Proc. 26th Linz seminar on fuzzy logic (in press) · Zbl 1200.03020
[8] P. Cintula, P. Hájek, Complexity issues in axiomatic extensions of Łukasiewicz logic, J. Logic Comput. (in press) · Zbl 1165.03009
[9] Esteva, F.; Gispert, J.; Godo, L.; Noguera, C., Adding truth constants to logics of continuous t-norms - axiomatization and completeness, Fuzzy sets syst., 158, 591-618, (2007) · Zbl 1117.03030
[10] Esteva, F.; Godo, L.; Noguera, C., On completeness results for predicate łukasiewicz, product, Gödel and nilpotent minimum logics expanded by truth constants, Mathw. soft comput., 14, 233-246, (2007) · Zbl 1213.03035
[11] Hájek, P., Metamathematics of fuzzy logic, (1998), Kluwer · Zbl 0937.03030
[12] Hájek, P., Fuzzy logic and arithmetical hierarchy, Fuzzy sets syst., 73, 359-363, (1995) · Zbl 0857.03011
[13] Hájek, P., Fuzzy logic and arithmetical hierarchy II, Stud. log., 58, 129-141, (1997) · Zbl 0869.03015
[14] Hájek, P., Fuzzy logic and arithmetical hierarchy III, Stud. log., 68, 129-142, (2001) · Zbl 0988.03042
[15] Hájek, P., Monadic fuzzy predicate logics, Stud. log., 71, 165-175, (2002) · Zbl 1006.03023
[16] Hájek, P., Arithmetical complexity of fuzzy predicate logics — a survey, Soft comput., 9, 935-941, (2005) · Zbl 1093.03012
[17] Hájek, P., Fuzzy logic and arithmetical hierarchy IV, (), 107-115 · Zbl 1084.03020
[18] Hájek, P., A non-arithmetical Gödel logic, Log. J. IGPL, 13, 435-441, (2005) · Zbl 1086.03018
[19] Hájek, P., Making description logic more powerful, Fuzzy sets syst., 154, 1-15, (2005) · Zbl 1094.03014
[20] Hájek, P., On arithmetical complexity of fragments of prominent fuzzy predicate logics, Soft comp., 12, 335-340, (2007) · Zbl 1142.03014
[21] Hájek, P., On witnessed models in fuzzy logic I, II, Math. log. Q., 57, 66-77, 610-615, (2007) · Zbl 1126.03031
[22] Hájek, P.; Cintula, P., On theories and models in fuzzy predicate logics, J. symb. log., 71, 863-880, (2006) · Zbl 1111.03030
[23] Hájek, P.; Montagna, F., A note on the first-order logic of complete BL-chains, Math. log. Q., 54, 435-448, (2008) · Zbl 1152.03019
[24] Hájek, P.; Paris, J.; Shepherdson, J., Rational predicate pavelka is a conservative extension of łukasiewicz predicate logic, Journal of symb. logic, 65, 669-682, (2000) · Zbl 0971.03025
[25] Jenei, S.; Montagna, F., A proof of standard completeness of esteva’s and godo’s MTL, Stud. log., 70, 184-192, (2002) · Zbl 0997.03027
[26] Komori, Yuichi, Super-łukasiewicz propositional logics, Nagoya math. J., 84, 119-133, (1981) · Zbl 0482.03007
[27] Montagna, F., Three complexity problems in quantified fuzzy logic, Stud. log., 68, 143-152, (2001) · Zbl 0985.03014
[28] Montagna, F., On the predicate logics of continuous t-norm BL-algebras, Arch. math. logic, 44, 97-114, (2005) · Zbl 1070.03013
[29] F. Montagna, -H. Ono, Kripke semantics, undecidability and standard completeness for Esteva and Godo’s logic MTL, Stud. Log. · Zbl 1013.03021
[30] Montagna, F.; Sachetti, -L., Kripke semantics for many-valued logic, Math. log. Q., 49, (2003), 629-641; Math. Log. Q. 50 (2004) 104-107 (corigendum) · Zbl 1035.03010
[31] Preining, N., Gödel logics and Cantor-bendixon analysis, (), 327-336 · Zbl 1023.03015
[32] M. Ragaz, Arithmetische Klassifikation von Formelnmengen der unendlichwertigen Logik, Dissertation ETH Zürich Nr. 6822, 1981 · Zbl 0516.03011
[33] Ragaz, M., Die unentscheidbarkeit der einstelligen unendlichwertigen prädikatenlogik, Arch. math. logik, 23, 129-139, (1983) · Zbl 0533.03007
[34] Rogers, H., Theory of recursive functions and effective computability, (1967), McGraw-Hill · Zbl 0183.01401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.