zbMATH — the first resource for mathematics

Mathematical fuzzy logic – what it can learn from Mostowski and Rasiowa. (English) Zbl 1112.03017
Based upon the recent progress in infinite-valued logic, which resulted also from important contributions of this author, he concisely discusses and evaluates main contributions to many-valued logic given by A. Mostowski and H. Rasiowa.

03B50 Many-valued logic
03B52 Fuzzy logic; logic of vagueness
03-03 History of mathematical logic and foundations
Full Text: DOI
[1] Cintula, P., ’Weakly implicative fuzzy logics’, Archive for Math. Logic, to apepar.
[2] Cintula, P., and P. Hájek, ’Triangular norm based predicate fuzzy logics’, in Proceedings of 26th Linz seminar on fuzzy set theory 2005, to appear. · Zbl 1200.03020
[3] Cintula, P., and M. Navara, ’ Compactness of Fuzzy Logics’, Fuzzy sets and systems 143 (2003), 59–73. · Zbl 1040.03019
[4] Esteva, F., and L. Godo, ’Monoidal t-norm based logic: towards a logic of left continuous t-norms’, Fuzzy sets and systems 123 (2001), 271–288. · Zbl 0994.03017
[5] Esteva, F., L. Godo, P. Hájek, and F. Montagna, ’Hoops and Fuzzy Logic’, Journal of Logic and Computation 13 (2003), 532–555. · Zbl 1039.03016
[6] Gottwald, S., and P. Hájek, ’Triangular norm based mathematical fuzzy logics’, in E.-P. Klement, R. Mesiar (eds.), Logical, algebraic, analytic and probabilistic aspects of triangular norms. Kluwer 2005, pp. 275–299. · Zbl 1078.03020
[7] Hájek, P., Metamathematics of fuzzy logic, Kluwer 1998. · Zbl 0937.03030
[8] Hájek, P., ’Arithmetical complexity and fuzzy logic – a survey’. Soft computing 9 (2005), 935–941. · Zbl 1093.03012
[9] Hájek, P., ’Observations on non-commutative fuzzy logic’, Soft computing 8 (2003), 38–43. · Zbl 1075.03009
[10] Hájek, P., ’What is mathematical fuzzy logic’. Fuzzy sets and systems 157 (2006), 597–603. · Zbl 1108.03028
[11] Montagna, F., Sacchetti, ’Kripke semantics for many-valued logics’, Mathematical logic quaterly 49 (2003), 629–641. · Zbl 1035.03010
[12] Mostowski, A., ’Proofs of non-deducibility in intuitionistic functional calculus’, Journal of Symbolic Logic 13 (1948), 204–207. · Zbl 0031.19304
[13] Mostowski, A., ’Axiomatizability of some many-valued predicate calculi’, Fund. Math. 50 (1961), 165–190. · Zbl 0099.00701
[14] Mostowski, A., An example of a non-axiomatizable many-valued logic. Zeitschr. Math. Logik und Grundlagenforschung 7 (1961), 72–76. · Zbl 0124.24801
[15] Mostowski, A., ’Hilbert epsilon function in many-valued logics’, Proc. Modal and many-valued logics, Helsinki 1962, pp. 169–188. · Zbl 0121.01202
[16] Novák, V., I., Perfilieva, and J. Močkoř, Mathematical principles of fuzzy logic, Kluwer, 2000.
[17] Rasiowa, H., An algebraic approach to non-classical logics, PWN -Polish Scientific Publishers and North Holland Publ. Comp., 1974. · Zbl 0299.02069
[18] Rasiowa, H., and R. Sikorski, The mathematics of metamathematics, Państwowe Wydawnictwo Naukowe, Warszawa, 1963. · Zbl 0122.24311
[19] Zadeh, L., ’Fuzzy sets’, Information and Control 8 (1965), 338–353. · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.