×

Global asymptotic stability of a generalization of the Pielou difference equation. (English) Zbl 1426.39016

The authors investigate the global asymptotic stability of a generalization of the Pielou difference equation. Their main result establishes the global stability of the unique positive equilibrium for a generalization of the two-dimensional Pielou equation. The authors also provide additional results on the global dynamics of the generalized Pielou equation for dimensions higher than two.

MSC:

39A30 Stability theory for difference equations
39A20 Multiplicative and other generalized difference equations
92D25 Population dynamics (general)
37N25 Dynamical systems in biology

Software:

GAS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R.P., Li, W.T., Pang, P.Y.H.: Asymptotic behavior of a class of nonlinear delay difference equations. J. Differ. Equ. Appl. 8, 719-728 (2002) · Zbl 1010.39003 · doi:10.1080/1023619021000000735
[2] Bartha, F.A., Garab, Á.: Necessary and sufficient condition for the global stability of a delayed discrete-time neuron model. J. Comput. Dyn. 1, 213-232 (2014) · Zbl 1308.39014 · doi:10.3934/jcd.2014.1.213
[3] Bashkirtseva, I., Ryashko, L.: Stochastic sensitivity analysis of noise-induced extinction in the Ricker model with delay and Allee effect. Bull. Math. Biol. 80, 1596-1614 (2018) · Zbl 1396.92065 · doi:10.1007/s11538-018-0422-6
[4] Bastien, G., Rogalski, M.: Results and problems about solutions of perturbed Lyness’ type order \[k\] k difference equations in \[{\mathbb{R}}_*^+\] R∗+\[u_{n+k}(u_n+\lambda )=f(u_{n+k-1}, \dots, u_{n+1})\] un+k(un+λ)=f(un+k-1,⋯,un+1), with examples, and test of the efficiency of a quasi-Lyapunov function method. J. Differ. Equ. Appl. 19, 1331-1352 (2013) · Zbl 1277.39017
[5] Čermak, J., Jánský, J., Kundrát, P.: On necessary and sufficient conditions for the asymptotic stability of higher order linear difference equations. J. Differ. Equ. Appl. 18, 1781-1800 (2012) · Zbl 1261.39022 · doi:10.1080/10236198.2011.595406
[6] Clark, C.W.: A delayed recruitment model of population dynamics with an application to Baleen Whale populations. J. Math. Biol. 3, 381-391 (1976) · Zbl 0337.92011 · doi:10.1007/BF00275067
[7] El-Morshedy, H.A., Jiménez López, V.: Global attractors for difference equations dominated by one-dimensional maps. J. Differ. Equ. Appl. 14, 391-410 (2008) · Zbl 1142.39009 · doi:10.1080/10236190701671632
[8] Garab, Á., Pötzsche, C.: Morse decompositions for delay-difference equations. J. Dyn. Differ. Eq. https://doi.org/10.1007/s10884-018-9685-8 · Zbl 1414.39002 · doi:10.1007/s10884-018-9685-8
[9] Hale, J.: Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, vol. 25. American Mathematical Society, Providence (1988) · Zbl 0642.58013
[10] Hogan, E., Zeilberger, D.: A new algorithm for proving global asymptotic stability of rational difference equations. J. Differ. Equ. Appl. 18(11), 1853-1873 (2012) · Zbl 1266.39016 · doi:10.1080/10236198.2011.599804
[11] Jiménez López, V.: The Y2K problem revisited. J. Differ. Equ. Appl. 16, 105-119 (2010) · Zbl 1206.39012 · doi:10.1080/10236190802409320
[12] Jiménez López, V., Parreño, E.: LAS and negative Schwarzian derivative do not imply GAS in Clark’s equation. J. Dyn. Differ. Equ. 28, 339-374 (2016) · Zbl 1373.39013 · doi:10.1007/s10884-016-9525-7
[13] Kocić, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Mathematics and its Applications, vol. 256. Kluwer Academic Publishers Group, Dordrecht (1993) · Zbl 0787.39001 · doi:10.1007/978-94-017-1703-8
[14] Kruse, N., Nesemann, T.: Global asymptotic stability in some discrete dynamical systems. J. Math. Anal. Appl. 235, 151-158 (1999) · Zbl 0933.37016 · doi:10.1006/jmaa.1999.6384
[15] Kuruklis, S.A., Ladas, G.: Oscillations and global attractivity in a discrete delay logistic model. Q. Appl. Math. 50, 227-233 (1992) · Zbl 0799.39004 · doi:10.1090/qam/1162273
[16] Levin, S.A., May, R.M.: A note on difference delay equations. Theor. Pop. Biol. 9, 178-187 (1976) · Zbl 0338.92021 · doi:10.1016/0040-5809(76)90043-5
[17] Liz, E.: A global picture of the gamma-Ricker map: a flexible discrete-time model with factors of positive and negative density dependence. Bull. Math. Biol. 80, 417-434 (2018) · Zbl 1384.92051 · doi:10.1007/s11538-017-0382-2
[18] Liz, E.: A new flexible discrete-time model for stable populations. Discr. Contin. Dyn. Syst. B 23, 2487-2498 (2018) · Zbl 1404.37109
[19] Liz, E., Buedo-Fernández, S.: A new formula to get sharp global stability criteria for one-dimensional discrete-time models. Q. Theory Dyn. Syst. https://doi.org/10.1007/s12346-018-00314-4 · Zbl 1429.39010
[20] Liz, E., Röst, G.: Dichotomy results for delay differential equations with negative Schwarzian derivative. Nonlinear Anal. Real World Appl. 11, 1422-1430 (2010) · Zbl 1207.34093 · doi:10.1016/j.nonrwa.2009.02.030
[21] Mallet-Paret, J., Sell, G.R.: Differential systems with feedback: time discretizations and Lyapunov functions. J. Dyn. Differ. Equ. 15, 659-698 (2003) · Zbl 1044.65059 · doi:10.1023/B:JODY.0000009750.14308.09
[22] Merino, O.: Global attractivity of the equilibrium of a difference equation: an elementary proof assisted by computer algebra system. J. Differ. Equ. Appl. 17, 33-41 (2011) · Zbl 1216.39022 · doi:10.1080/10236190902932718
[23] Pielou, E.C.: Population and Community Ecology. Gordon and Breach, New York (1974) · Zbl 0349.92024
[24] Quinn, T.J., Deriso, R.B.: Quantitative Fish Dynamics. Oxford University Press, New York (1999)
[25] Tkachenko, V., Trofimchuk, S.: Global stability in difference equations satisfying the generalized Yorke condition. J. Math. Anal. Appl. 303, 173-187 (2005) · Zbl 1068.39026 · doi:10.1016/j.jmaa.2004.08.028
[26] Tkachenko, V., Trofimchuk, S.: A global attractivity criterion for nonlinear non-autonomous difference equations. J. Math. Anal. Appl. 322, 901-912 (2006) · Zbl 1103.39017 · doi:10.1016/j.jmaa.2005.09.052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.