×

Existence and nonexistence of solutions to nonlocal elliptic problems. (English) Zbl 1485.35190

Summary: It is established existence and nonexistence of solutions to nonlocal elliptic problems involving the generalized pseudo-relativistic Hartree equation. Our arguments are based on variational methods together with a fine analysis on the Pohozaev identity.

MSC:

35J60 Nonlinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosio, V., Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57, 5, 051502 (2016) · Zbl 1480.81043 · doi:10.1063/1.4949352
[2] Ambrosio, V., Existence of heteroclinic solutions for a pseudo-relativistic Allen-Cahn type equation, Adv. Nonlinear Stud., 15, 2, 395-414 (2015) · Zbl 1326.35379 · doi:10.1515/ans-2015-0207
[3] Ambrosio, V., Nonlinear Fractional Schrödinger Equations in \({\mathbb{R}}^N\), Frontiers in Elliptic and Parabolic Problems, xvii+662 (2021), Cham: Birkhäuser/Springer, Cham · Zbl 1472.35003 · doi:10.1007/978-3-030-60220-8
[4] Ambrosio, V., The nonlinear fractional relativistic Schrödinger equation: existence, multiplicity, decay and concentration results, Discrete Cont. Dyn. Syst., 41, 12, 5659-5705 (2021) · Zbl 1483.35314 · doi:10.3934/dcds.2021092
[5] Belchior, P.; Bueno, H.; Miyagaki, OH; Pereira, G., Asymptotic behavior of ground states of generalized pseudo-relativistic Hartree equation, Asymptot. Anal., 118, 4, 269-295 (2020) · Zbl 1452.35160 · doi:10.3233/ASY-191561
[6] Bartolo, P.; Benci, V.; Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal., 7, 9, 981-1012 (1983) · Zbl 0522.58012 · doi:10.1016/0362-546X(83)90115-3
[7] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 7-9, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[8] Cassani, D.; Zhang, J., Ground states and semiclassical states of nonlinear Choquard equations involving Hardy-Littlewood-Sobolev critical growth, Adv. Nonlinear Anal., 8, 1, 1184-1212 (2019) · Zbl 1418.35168 · doi:10.1515/anona-2018-0019
[9] Cho, YG; Ozawa, T., On the semi relativistic Hartree-type equation, SIAM J. Math. Anal., 38, 4, 1060-1074 (2006) · Zbl 1122.35119 · doi:10.1137/060653688
[10] Choi, W.; Seok, J., Non relativistic limit of standing waves for pseudo-relativistic nonlinear Schrödinger equations, J. Math. Phys., 57, 2, 021510 (2016) · Zbl 1332.81039 · doi:10.1063/1.4941037
[11] Cingolani, S.; Clapp, M.; Secchi, S., Intertwining semiclassical solutions to a Schrödinger-Newton system, Discrete Contin. Dyn. Syst. Ser. S, 6, 4, 891-908 (2013) · Zbl 1260.35198
[12] Cingolani, S.; Secchi, S., Ground states for the pseudo-relativistic Hartree equation with external potential, Proc. Roy. Soc. Edinb. Sect. A, 145, 1, 73-90 (2015) · Zbl 1320.35300 · doi:10.1017/S0308210513000450
[13] Cingolani, S.; Secchi, S., Semiclassical analysis for pseudo-relativistic Hartree equations, J. Differ. Equ., 258, 12, 4156-4179 (2015) · Zbl 1319.35204 · doi:10.1016/j.jde.2015.01.029
[14] Cingolani, S.; Secchi, S.; Squassina, M., Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proc. R. Soc. Edinb. Sect. A, 140, 5, 973-1009 (2010) · Zbl 1215.35146 · doi:10.1017/S0308210509000584
[15] Costa, DG; Magalhães, CA, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal., 23, 11, 1401-1412 (1994) · Zbl 0820.35059 · doi:10.1016/0362-546X(94)90135-X
[16] Costa, DG; Tehrani, H., On a class of asymptotically linear elliptic problems in \({\mathbb{R}}^N\), J. Differ. Equ., 173, 2, 470-494 (2001) · Zbl 1098.35526 · doi:10.1006/jdeq.2000.3944
[17] Coti Zelati, V.; Nolasco, M., Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 22, 1, 51-72 (2011) · Zbl 1219.35292 · doi:10.4171/RLM/587
[18] Demengel, F.; Demengel, G., Functional Spaces for the Theory of Elliptic Partial Differential Equations (2012), London: Springer, London · Zbl 1239.46001 · doi:10.1007/978-1-4471-2807-6
[19] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[20] Ekeland, I., Convexity Methods in Hamiltonian Mechanics (1990), Berlin: Springer, Berlin · Zbl 0707.70003 · doi:10.1007/978-3-642-74331-3
[21] Elgart, A.; Schlein, B., Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60, 4, 500-545 (2007) · Zbl 1113.81032 · doi:10.1002/cpa.20134
[22] Fall, MM; Felli, V., Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35, 12, 5827-5867 (2015) · Zbl 1336.35356 · doi:10.3934/dcds.2015.35.5827
[23] Fröhlich, J., Lenzmann, E.: Mean-field limit of quantum Bose gases and nonlinear Hartree equation, Séminaire: Équations aux Dérivées Partielles. 2003-2004, Exp. No. XIX, 26 pp., Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau (2004) · Zbl 1292.81040
[24] Gao, F.; Yang, M., The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math., 61, 7, 1219-1242 (2018) · Zbl 1397.35087 · doi:10.1007/s11425-016-9067-5
[25] Jeanjean, L.; Tanaka, K., Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differ. Equ., 21, 3, 287-318 (2004) · Zbl 1060.35012 · doi:10.1007/s00526-003-0261-6
[26] Lehrer, R.; Maia, LA, Positive solutions of asymptotically linear equations via Pohozaev manifold, J. Funct. Anal., 266, 1, 213-246 (2014) · Zbl 1305.35034 · doi:10.1016/j.jfa.2013.09.002
[27] Lehrer, R.; Maia, LA; Ruviaro, R., Bound states of a nonhomogeneous nonlinear Schrödinger equation with non symmetric potential, NoDEA Nonlinear Differ. Equ. Appl., 22, 4, 651-672 (2015) · Zbl 1321.35210 · doi:10.1007/s00030-014-0299-5
[28] Lenzmann, E., Uniqueness of ground states for pseudo relativistic Hartree equations, Anal. PDE, 2, 1, 1-27 (2009) · Zbl 1183.35266 · doi:10.2140/apde.2009.2.1
[29] Lieb, EH, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math. (2), 118, 2, 349-374 (1983) · Zbl 0527.42011 · doi:10.2307/2007032
[30] Lieb, EH; Yau, H-T, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., 112, 1, 147-174 (1987) · Zbl 0641.35065 · doi:10.1007/BF01217684
[31] Melgaard, M.; Zongo, F., Multiple solutions of the quasi relativistic Choquard equation, J. Math. Phys., 53, 3, 033709 (2012) · Zbl 1274.35303 · doi:10.1063/1.3695991
[32] Moroz, V.; Van Schaftingen, J., Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 2, 153-184 (2013) · Zbl 1285.35048 · doi:10.1016/j.jfa.2013.04.007
[33] Moroz, V.; Van Schaftingen, J., Semi-classical states for the Choquard equations, Calc. Var. Partial Differ. Equ., 52, 1-2, 199-235 (2015) · Zbl 1309.35029 · doi:10.1007/s00526-014-0709-x
[34] Qin, Dongdong; Chen, Jing; Tang, XianHua, Existence and non-existence of nontrivial solutions for Schrödinger systems via Nehari-Pohozaev manifold, Comput. Math. Appl., 74, 12, 3141-3160 (2017) · Zbl 1400.35095 · doi:10.1016/j.camwa.2017.08.010
[35] Tartar, L.: An introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3. Springer, Berlin; UMI, Bologna (2007) · Zbl 1126.46001
[36] Wei, J.; Winter, M., Strongly interacting bumps for the Schrödinger-Newton equation, J. Math. Phys., 50, 1, 012905 (2009) · Zbl 1189.81061 · doi:10.1063/1.3060169
[37] Willem, M., Minimax Theorems (1996), Boston: Birkhäser, Boston · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.