×

Simulation of interaction of flocking particles and an incompressible fluid. (English) Zbl 1443.65258

Summary: We have presented a new coupled kinetic-fluid model for the interactions between Cucker-Smale (CS) flocking particles and fluid recently. Our coupled system consists of the kinetic Cucker-Smale equation and the incompressible Navier-Stokes equations, and these two systems are coupled through the drag force. For the proposed model, we provide numerical simulations to look at their behavior.

MSC:

65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76Z10 Biopropulsion in water and in air
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Degond, P.; Yang, T., Diffusion in a continuum model of self-propelled particles with alignment interaction, Math. Models Methods Appl. Sci., 20, 1459-1490 (2010) · Zbl 1420.76006
[2] Leonard, N. E.; Paley, D. A.; Lekien, F.; Sepulchre, R.; Fratantoni, D. M.; Davis, R. E., Collective motion, sensor networks and ocean sampling, Proc. IEEE, 95, 48-74 (2007)
[3] Park, J.; Kim, H.; Ha, S.-Y., Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55, 2617-2623 (2010) · Zbl 1368.93607
[4] Toner, J.; Tu, Y., Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58, 4828-4858 (1998)
[5] Topaz, C. M.; Bertozzi, A. L., Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65, 152-174 (2004) · Zbl 1071.92048
[6] Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Schochet, O., Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75, 1226-1229 (1995)
[7] Ahn, S.; Choi, H.; Ha, S.-Y.; Lee, H., On collision avoiding initial configurations to the Cucker-Smale type flocking models, Commun. Math. Sci., 10, 2, 625-643 (2012) · Zbl 1321.92084
[8] Ahn, S.; Ha, S.-Y., Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51, 103-301 (2010) · Zbl 1314.92019
[9] Bolley, F.; Canizo, J. A.; Carrillo, J. A., Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21, 11, 2179-2210 (2011) · Zbl 1273.82041
[10] Boudin, L.; Desvillettes, L.; Grandmont, C.; Moussa, A., Global existence of solution for the coupled Vlasov and Navier-Stokes equations, Differential Integral Equations, 22, 1247-1271 (2009) · Zbl 1240.35403
[11] Canizo, J. A.; Carrillo, J. A.; Rosado, J., A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21, 3, 515-539 (2011) · Zbl 1218.35005
[12] Carrillo, J. A.; D’Orsogna, M. R.; Panferov, V., Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2, 363-378 (2009) · Zbl 1195.92069
[13] Carrillo, J. A.; Klar, A.; Martin, S.; Tiwari, S., Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20, 1533-1552 (2010) · Zbl 1197.92052
[14] Cucker, F.; Dong, J. G., Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55, 1238-1243 (2010) · Zbl 1368.93370
[15] Cucker, F.; Huepe, C., Flocking with informed agents, (Mathematics in Action, Vol. 1 (2008)), 1-25 · Zbl 1163.93306
[16] Cucker, F.; Mordecki, E., Flocking in noisy environments, J. Math. Pures Appl., 89, 278-296 (2008) · Zbl 1273.91404
[17] Duan, R.; Fornasier, M.; Toscani, G., A kinetic flocking model with diffusion, Comm. Math. Phys., 300, 95-145 (2010) · Zbl 1213.35395
[18] Fornasier, M.; Haskovec, J.; Toscani, G., Fluid dynamic description of flocking via Povzner-Boltzmann equation, Physica D, 240, 21-31 (2011) · Zbl 1213.37121
[19] Ha, S.-Y.; Ha, T.; Kim, J., Asymptotic dynamics for the Cucker-Smale mdoel with the Rayleigh friction, J. Phys. A, 43, Article 315201 pp. (2010) · Zbl 1375.92051
[20] Ha, S.-Y.; Jeong, E.; Kang, J.; Kang, K. K., Emergence of multi-cluster configurations from attractive and repulsive interactions, Math. Models Methods Appl. Sci., 22, 8, 1250013 (2012), (42p) · Zbl 1406.91321
[21] Ha, S.-Y.; Jung, S.; Slemrod, M., Fast-slow dynamics of planar particle models for flocking and swarming, J. Differential Equations, 252, 2563-2579 (2012) · Zbl 1243.34065
[22] Ha, S.-Y.; Kang, M. J.; Lattanzio, C.; Rubino, B., A class of interacting particle systems on the infinite cylinder with flocking phenomena, Math. Models Methods Appl. Sci., 22, 7, 1250008 (2012), (25p) · Zbl 1241.92081
[23] Ha, S.-Y.; Liu, J. G., A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7, 297-325 (2009) · Zbl 1177.92003
[24] Ha, S.-Y.; Slemrod, M., Flocking dynamics of a singularly perturbed oscillator chain and the Cucker-Smale system, J. Dynam. Differential Equations, 22, 325-330 (2010) · Zbl 1207.34071
[25] Ha, S.-Y.; Tadmor, E., From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, 1, 415-435 (2008) · Zbl 1402.76108
[26] Kang, J. H.; Ha, S.-Y.; Kang, K.; Jeong, E., How do cultural classes emerge from assimilation and distinction? An extension of the Cucker-Smale flocking model, J. Math. Sociol., 38, 1, 47-71 (2014) · Zbl 1307.91150
[27] Motsch, S.; Tadmor, E., A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144, 923-947 (2011) · Zbl 1230.82037
[28] Bae, H. O.; Choi, Y. P.; Ha, S.-Y.; Kang, M. J., Time-asymptotic interaction of flocking particles and an incompressible viscous fluid, Nonlinearity, 25, 1155-1177 (2012) · Zbl 1236.35117
[29] Bae, H. O.; Choi, Y. P.; Ha, S.-Y.; Kang, M. J., Global existence of strong solution for the Cucker-Smale-Navier-Stokes system, J. Differential Equations, 257, 6, 2225-2255 (2014) · Zbl 1294.35054
[30] Bae, H. O.; Choi, Y. P.; Ha, S.-Y.; Kang, M. J., Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible viscous fluids, Discrete Contin. Dyn. Syst., 34, 11, 4419-4458 (2014) · Zbl 1308.35158
[32] Bentz, D.; Ferraris, C.; Galler, M., Influence of particle size distributions on yield stress and viscosity of cement-fly ash pastes, Cem. Concr. Res., 42, 2, 404-409 (2012)
[33] Hu, Y. T.; Palla, C.; Lips, A., Comparison between shear banding and shear thinning in entangled micellar solutions, J. Rheol., 52, 379-400 (2008)
[34] Macías, E. R.; Bautista, F.; Soltero, F. F.A.; Puig, J. E.; Attané, P.; Manero, O., On the shear thickening flow of dilute CTAT worm-like micellar solutions, J. Rheol., 47, 643-658 (2003)
[35] Omland, H.; Dahl, B.; Saasen, A.; Svances, K.; Amundsen, A., The influence of particle type and size distribution on viscosity in a non-Newtonian drilling fluid, Annu. Trans. Nordic Rheol. Soc., 13, 107-110 (2005)
[36] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[37] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys., 83, 32-78 (1989) · Zbl 0674.65061
[38] Kim, J.; Moin, P., Application of a fractional step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59, 308-323 (1985) · Zbl 0582.76038
[39] Ghia, U.; Ghia, K. N.; Shin, C. T., High resolution for incompressible Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[40] Hou, S.; Zou, Q.; Chen, S.; Doolen, G.; Cogley, A., Simulation of cavity flows by the lattice Boltzmann method, J. Comput. Phys., 118, 329-347 (1995) · Zbl 0821.76060
[41] Gupta, M. M.; Kalita, J. C., A new Paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation, J. Comput. Phys., 207, 52-68 (2005) · Zbl 1177.76257
[42] Kim, Y.; Kim, D. W.; Jun, S.; Lee, J. H., Meshfree point collocation method for the stream-vorticity formulation of 2D incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 196, 3095-3109 (2007) · Zbl 1173.76386
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.