×

On pressurized curvilinearly orthotropic circular disk, cylinder and sphere made of radially nonuniform material. (English) Zbl 1253.74013

Summary: A unified analysis is presented for the elastic response of a pressurized cylindrically anisotropic hollow disk under assumed conditions of plane stress, or a hollow cylinder under plane strain conditions, and a spherically anisotropic hollow sphere, made of material which is nonuniform in the radial direction according to the power law relationship. The solution for a cylinder under generalized plane strain is also presented. Two parameters play a prominent role in the analysis: the material nonuniformity parameter \(m\), and the parameter \(\varphi\) which accounts for the combined effects of material anisotropy, represented by the specified parameters \((\alpha,\beta,\gamma)\), and material nonuniformity, represented by the parameter \(m\). The radial and circumferential stresses are the linear combinations of two power functions of the radial coordinate, whose exponents \((n_1\) and \(n_2)\) depend on the parameters \(m\) and \(\varphi\). New light is added to the stress amplification and shielding under combined effects of curvilinear anisotropy and radial nonuniformity. Different loading combinations are considered, including the equal pressure at both boundaries, and the uniform pressure at the inner or the outer boundary. While the stress state for the equal pressure loading is uniform in the case of isotropic uniform material \((m=0, \varphi =1)\), and for one particular radially nonuniform and anisotropic material, it is strongly nonuniform for a general anisotropic or nonuniform material. If the aspect ratio of the inner and outer radii decreases (small hole in a large disk/cylinder or sphere), the magnitude of the circumferential stress at the inner radius increases for \(n_1>0\) (stress amplification), and decreases for \(n_1<0\) (stress shielding). Both can be achieved by various combinations of the material parameters \(m,\alpha,\beta\), and \(\gamma\). While the stress amplification in the case of a pressurized external boundary occurs readily, it occurs only exceptionally in the case of a pressurized internal boundary. The effects of material parameters on the displacement response are also analyzed. The approximate character of the plane stress solution of a pressurized thin disk is discussed and the results are compared with those obtained by numerical solution of the exact three-dimensional disk model.

MSC:

74B05 Classical linear elasticity
74E05 Inhomogeneity in solid mechanics
74E10 Anisotropy in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aguiar, A.R.: Local and global injective solution of the rotationally symmetric sphere problem. J. Elast. 84, 99–129 (2006) · Zbl 1158.74314 · doi:10.1007/s10659-006-9058-0
[2] Aguiar, A., Fosdick, R.: Self-intersection in elasticity. Int. J. Solids Struct. 38, 4797–4823 (2001) · Zbl 1028.74018 · doi:10.1016/S0020-7683(00)00325-5
[3] Aguiar, A.R., Fosdick, R.L., Sánchez, J.A.G.: A study of penalty formulations used in the numerical approximation of a radially symmetric elasticity problem. J. Mech. Mater. Struct. 3, 1403–1427 (2008) · doi:10.2140/jomms.2008.3.1403
[4] Antman, S.S., Negrón-Marrero, P.V.: The remarkable nature of radially symmetric equilibrium states of aelotropic nonlinearly elastic bodies. J. Elast. 18, 131–164 (1987) · Zbl 0631.73016 · doi:10.1007/BF00127554
[5] Batra, R.C., Iaccarino, G.L.: Exact solutions for radial deformations of a functionally graded isotropic and incompressible second-order elastic cylinder. Int. J. Non-Linear Mech. 43, 383–398 (2008) · doi:10.1016/j.ijnonlinmec.2008.01.006
[6] Boresi, A.P., Chong, K.P.: Elasticity in Engineering Mechanics. Wiley, New York (2000) · Zbl 0875.73007
[7] Christensen, R.M.: Properties of carbon fibers. J. Mech. Phys. Solids 42, 681–695 (1994) · doi:10.1016/0022-5096(94)90058-2
[8] Erdogan, E.: Fracture mechanics of functionally graded materials. Compos. Eng. 5, 753–770 (1995) · doi:10.1016/0961-9526(95)00029-M
[9] Fosdick, R.L., Royer-Carfagni, G.: The constraint of local injectivity in linear elasticity theory. Proc. R. Soc. Lond. A 457, 2167–2187 (2001) · Zbl 1044.74003 · doi:10.1098/rspa.2001.0812
[10] Fosdick, R.L., Freddi, F., Royer-Carfagni, G.: Bifurcation instability in linear elasticity with the constraint of local injectivity. J. Elast. 90, 99–126 (2008) · Zbl 1137.74025 · doi:10.1007/s10659-007-9134-0
[11] Freddi, F., Royer-Carfagni, G.: From non-linear elasticity to linearized theory: examples defying intuition. J. Elast. 96, 1–26 (2009) · Zbl 1273.74023 · doi:10.1007/s10659-009-9191-7
[12] Froli, M.: Distribuzione ottimalle dei moduli elastici in corone circolari non omogenee. Atti Ist. Sci. Costr. Univ. Pisa 18(251), 13–25 (1987)
[13] Galmudi, D., Dvorkin, J.: Stresses in anisotropic cylinders. Mech. Res. Commun. 22, 109–113 (1995) · doi:10.1016/0093-6413(95)00002-X
[14] Giannakopoulos, A.E., Suresh, S., Finot, M., Ollson, M.: Elastoplastic analysis of thermal cycling: layered materials with compositional gradient. Acta Metall. Mater. 43, 1335–1354 (1995) · doi:10.1016/0956-7151(94)00360-T
[15] Green, D.W., Winandy, J.E., Kretschmann, D.E.: Mechanical properties of wood. In: Wood Handbook–Wood as an Engineering Material (Centennial edition), pp. 4-1–4-45. Forest Products Laboratory, United States Department of Agriculture Forest Service, Madison (2010)
[16] Horgan, C.O., Baxter, S.C.: Effects of curvilinear anisotropy on radially symmetric stresses in anisotropic linearly elastic solids. J. Elast. 42, 31–48 (1996) · Zbl 0870.73007 · doi:10.1007/BF00041222
[17] Horgan, C.O., Chan, A.M.: The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials. J. Elast. 55, 43–59 (1999) · Zbl 0965.74012 · doi:10.1023/A:1007625401963
[18] Horgan, C.O., Chan, A.M.: The stress response of functionally graded isotropic linearly elastic rotating disks. J. Elast. 55, 219–230 (1999) · Zbl 0970.74017 · doi:10.1023/A:1007644331856
[19] Jin, Z.-H., Batra, R.C.: Some basic fracture mechanics concepts in functionally graded materials. J. Mech. Phys. Solids 44, 1221–1235 (1996) · doi:10.1016/0022-5096(96)00041-5
[20] Kirchner, H.O.K.: Elastically anisotropic angularly inhomogeneous media. I. A new formalism. Philos. Mag., B 60, 423–432 (1989) · doi:10.1080/13642818908205917
[21] Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. Mir, Moscow (1981)
[22] Lekhnitskii, S.G.: Anisotropic Plates, 2nd edn. Gordon &amp; Breach, New York (1987)
[23] Lubarda, V.A.: Remarks on axially and centrally symmetric elasticity problems. Int. J. Eng. Sci. 47, 642–647 (2009) · Zbl 1213.35383 · doi:10.1016/j.ijengsci.2008.09.010
[24] Lubarda, V.A.: Elastic response of radially nonuniform, curvilinearly anisotropic solid and hollow disks, cylinders and spheres. Proc. Monten. Acad. Sci. Arts 20 (2012, to appear)
[25] Roy, S.C.: Radial deformation of a nonhomogeneous spherically isotropic elastic sphere with a concentric spherical inclusion. Proc. Indian Acad. Sci., Sect. A, Phys. Sci. 85 A, 338–350 (1977) · Zbl 0373.73079
[26] Shaffer, B.W.: Orthotropic annular disks in plane stress. J. Appl. Mech. 34, 1027–1029 (1967) · doi:10.1115/1.3607811
[27] Tarn, J.-Q.: Stress singularity in an elastic cylinder of cylindrically anisotropic materials. J. Elast. 69, 1–13 (2002) · Zbl 1045.74010 · doi:10.1023/A:1027338114509
[28] Theokaris, P.S., Philippidis, T.P.: True bounds on Poisson’s ratios for transversely isotropic solids. J. Strain Anal. Eng. Des. 27, 43–44 (1992) · doi:10.1243/03093247V271043
[29] Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970) · Zbl 0266.73008
[30] Ting, T.C.T.: Pressuring, shearing, torsion and extension of a circular tube or bar of cylindrically anisotropic material. Proc. R. Soc. Lond. A 452, 2397–2421 (1996) · Zbl 0871.73029 · doi:10.1098/rspa.1996.0129
[31] Ting, T.C.T.: The remarkable nature of radially symmetric deformation of spherically uniform linear anisotropic elastic material. J. Elast. 53, 47–64 (1999) · Zbl 0946.74014 · doi:10.1023/A:1007516218827
[32] Ting, T.C.T.: New solutions to pressuring, shearing, torsion and extension of a cylindrically anisotropic elastic circular tube or bar. Proc. R. Soc. Lond. A 455, 3527–3542 (1999) · Zbl 0967.74037 · doi:10.1098/rspa.1999.0464
[33] Ting, T.C.T.: Poisson’s ratio for anisotropic materials can have no bounds. Q. J. Mech. Appl. Math. 58, 73–82 (2005) · Zbl 1064.74043 · doi:10.1093/qjmamj/hbh021
[34] Tutanku, N.: Stresses in thick-walled FGM cylinders with exponentially-varying properties. Eng. Struct. 29, 2032–2035 (2007)
[35] Ugural, A.C.: Stresses in Beams, Plates, and Shells, 3rd edn. CRC Press, Boca Raton (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.