×

Dependent frequency-severity modeling of insurance claims. (English) Zbl 1348.91180

Summary: Standard ratemaking techniques in non-life insurance assume independence between the number and size of claims. Relaxing the independence assumption, this article explores methods that allow for the correlation among frequency and severity components for micro-level insurance data. To introduce granular dependence, we rely on a hurdle modeling framework where the hurdle component concerns the occurrence of claims and the conditional component looks into the number and size of claims given occurrence. We propose two strategies to correlate the number of claims and the average claim size in the conditional component. The first is based on conditional probability decomposition and treats the number of claims as a covariate in the regression model for the average claim size, the second employed a mixed copula approach to formulate the joint distribution of the number and size of claims. We perform a simulation study to evaluate the performance of the two approaches and then demonstrate their application using a U.S. auto insurance dataset. The hold-out sample validation shows that the proposed model is superior to the industry benchmarks including the Tweedie and the two-part generalized linear models.

MSC:

91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics
62J12 Generalized linear models (logistic models)
62H05 Characterization and structure theory for multivariate probability distributions; copulas
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aas, K.; Czado, C.; Frigessi, A.; Bakken, H., Pair-copula constructions of multiple dependence, Insur. Math. Econ., 44, 2, 182-198 (2009) · Zbl 1165.60009
[2] Boucher, J.-P.; Denuit, M.; Guillén, M., Risk classification for claim counts: a comparative analysis of various zero-inflated mixed Poisson and hurdle models, N. Am. Actuar. J., 11, 4, 110-131 (2007) · Zbl 1480.91187
[3] Boucher, J.-P.; Denuit, M.; Guillen, M., Models of insurance claim counts with time dependence based on generalisation of Poisson and negative binomial distributions, Variance, 2, 1, 135-162 (2008)
[4] Czado, C.; Gneiting, T.; Held, L., Predictive model assessment for count data, Biometrics, 65, 4, 1254-1261 (2009) · Zbl 1180.62162
[5] Czado, C.; Kastenmeier, R.; Brechmann, E. C.; Min, A., A mixed copula model for insurance claims and claim sizes, Scand. Act. J., 2012, 4, 278-305 (2012) · Zbl 1277.62249
[6] de Jong, P.; Heller, G. Z., Generalized Linear Models for Insurance Data (2008), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1142.91046
[7] Erhardt, V.; Czado, C., Modeling dependent yearly claim totals including zero claims in private health insurance, Scand. Act. J., 2012, 2, 106-129 (2012) · Zbl 1277.91084
[8] Frees, E., Frequency and severity models, (Edward, E.; Meyers, G.; Derrig, R. A., Predictive Modeling Applications in Actuarial Science (2014), Cambridge University Press: Cambridge University Press Cambridge)
[9] Frees, E. W.; Gao, J.; Rosenberg, M. A., Predicting the frequency and amount of health care expenditures, N. Am. Actuar. J., 15, 3, 377-392 (2011)
[10] Frees, E. W.; Meyers, G.; Cummings, A. D., Summarizing insurance scores using a gini index, J. Amer. Statist. Assoc., 106, 495, 1085-1098 (2011) · Zbl 1229.62140
[11] Ghosh, P.; Albert, P. S., A bayesian analysis for longitudinal semicontinuous data with an application to an acupuncture clinical trial, Comput. Stat. Data Anal., 53, 3, 699-706 (2009) · Zbl 1452.62808
[12] Gschlößl, S.; Czado, C., Spatial modelling of claim frequency and claim size in non-life insurance, Scand. Act. J., 2007, 3, 202-225 (2007) · Zbl 1150.91026
[13] Jørgensen, B.; de Souza, M., Fitting tweedies compound Poisson model to insurance claims data, Scand. Act. J., 1, 1, 69-93 (1994) · Zbl 0802.62089
[14] Krämer, N.; Brechmann, E. C.; Silvestrini, D.; Czado, C., Total loss estimation using copula-based regression models, Insurance Math. Econom., 53, 3, 829-839 (2013) · Zbl 1290.91092
[15] Liu, L.; Strawderman, R. L.; Cowen, M. E.; Shih, Y.-C. T., A flexible two-part random effects model for correlated medical costs, J. Health Econ., 29, 1, 110-123 (2010)
[16] Manning, W. G.; Basu, A.; Mullahy, J., Generalized modeling approaches to risk adjustment of skewed outcomes data, J. Health Econ., 24, 3, 465-488 (2005)
[17] Mullahy, J., Specification and testing of some modified count data models, J. Econometrics, 33, 3, 341-365 (1986)
[18] Olsen, M. K.; Schafer, J. L., A two-part random-effects model for semicontinuous longitudinal data, J. Amer. Statist. Assoc., 96, 454, 730-745 (2001) · Zbl 1017.62064
[19] Prieger, J. E., A flexible parametric selection model for non-normal data with application to health care usage, J. Appl. Econ., 17, 4, 367-392 (2002)
[20] Shi, P., Multivariate longitudinal modeling of insurance company expenses, Insurance Math. Econom., 51, 1, 204-215 (2012) · Zbl 1284.91269
[21] Shi, P., Fat-tailed regression models, (Edward, E.; Meyers, G.; Derrig, R. A., Predictive Modeling Applications in Actuarial Science (2014), Cambridge University Press: Cambridge University Press Cambridge)
[22] Shi, P.; Zhang, W., Private information in healthcare utilization: specification of a copula-based hurdle model, J. R. Stat. Soc.: Ser. A (Stat. Soc.), 178, 2, 337-361 (2015)
[23] Shi, P.; Zhang, W.; Valdez, E. A., Testing adverse selection with two-dimensional information: evidence from the singapore auto insurance market, J. Risk Insur., 79, 4, 1077-1114 (2012)
[24] Smith, M. D., Modelling sample selection using archimedean copulas, Econ. J., 6, 1, 99-123 (2003) · Zbl 1037.62047
[25] Smyth, G.; Jørgensen, B., Fitting tweedie’s compound Poisson model to insurance claims data: dispersion modelling, ASTIN Bull., 32, 1, 143-157 (2002) · Zbl 1094.91514
[26] Song, P. X.-K.; Li, M.; Yuan, Y., Joint regression analysis of correlated data using gaussian copulas, Biometrics, 65, 1, 60-68 (2009) · Zbl 1159.62049
[27] Sun, J.; Frees, E. W.; Rosenberg, M. A., Heavy-tailed longitudinal data modeling using copulas, Insurance Math. Econom., 42, 2, 817-830 (2008) · Zbl 1152.91605
[28] Vuong, Q. H., Likelihood ratio tests for model selection and non-nested hypotheses, Econometrica, 57, 2, 307-333 (1989) · Zbl 0701.62106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.